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Abstract: The brain tumor is normally caused by the occurrence of abnormal cells in the brain region. Malignant or 
cancerous and benign tumors are the two major types in the brain tumor classification. Brain tumor classification is the 
process of differentiating various stages of tumors like grading of gliomas as well as primary gliomas from metastases. The 
diagnosis of a brain tumor was made by the study of MR images. Some of the notable brain tumor classification techniques 
are knowledge-based techniques, support vector machine classifiers (SVM), and neural network classifiers. This survey 
intends to provide a review of65 papers on the topic of brain tumor classification. Mainly, the review comes with two major 
aspects: the analysis of classification algorithms and the analysis of segmentation algorithms. At first, a clear literature 
review is made in terms of various brain tumor classification models. Subsequently, the analysis is made under the 
performance measure especially the accuracy rate is analyzed from all the reviewed papers. Further analysis is made 
regarding the used dataset, image modalities, and the used optimization concept as well. All the analytical results are 
explained in terms of tabulation and diagrammatic graphical representation. Finally, the clear problem statement is 
described showing the different challenges faced in the classification process and the future direction that is to be made. 
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Nomenclature 

Acronyms Description 
GA  Genetic Algorithm 
PFree Bat Parameter-Free Bat 
EBT  Embryonal Brain Tumor 
DWT Discrete Wavelet Transform 
PCA Principal Components Analysis 
GLCM Grey Level Co-Occurrence Matrix 
AANN Adaptive Artificial Neural Network 
WOA Whale Optimization Algorithm 
PSONN Particle Swam Optimization Neural Network 
RST Rough Set Theory 
EATVD Edge Adaptive Total Variation Denoising  
SVM Support Vector Machine 
LA Learning Automata 
KNN K-Nearest Neighbor 
DT Decision Tree 
PKC Pointing Kernel Classifier 
FLAIR Fluid- Attenuated Inversion Recovery 
MRI Magnetic Resonance Imaging 
ERT Extremely Randomized Trees 
CEEMDAN Complete Ensemble Empirical Mode Decomposition with Adaptive Noise 
DCE Dynamic Contrast Enhanced 
PD Progressive Disease 
CEUS Contrast-Enhanced UltraSound 
CDSS Clinical Decision Support System 
FASMA Fast Spectroscopic Multiple Analysis 
WM White Matter 
GM Grey Matter 
CSF CerebroSpinal Fluid 
SOM Self-Organizing Map 
LVQ Learning Vector Quantization 
WST Wavelet Statistical Texture  
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WCT Wavelet Co-occurrence Texture 
PNN Probabilistic Neural Network  
ANN Artificial Neural Network 
mBm multi-fractional Brownian motion 
NN Neural Network 
CBIR Content-Based Image Retrieval 
LP-iDOPE Liposomally formulated Phospholipid-Conjugated ICG 
BLI Bioluminescence imaging 
Nluc NanoLuc 
Fluc Firefly luciferase 
MRS MR spectroscopy 
ICA Independent Component Analysis 
 DSC Dynamic Susceptibility Contrast 
FTIR Fourier transform Infrared 
OCT Optical Coherence Tomography 
ALDH Aldehyde Dehydrogenase 
BTIC Brain Tumour Initiating Cell 
TBRO Threshold Based Region Optimization 
GA Genetic Algorithm 
WOA Whale Optimization Algorithm 
PSO Particle Swarm Optimization 
CSA Cuckoo Search Algorithm 

1. Introduction  
In the human body, one of the most complex organs that work with billions of cells is the brain [82].  The 
uncontrolled or abnormal growth of cancerous cells in the body is referred to as tumors [66] [67]. Brain 
tumor [84] is defined as the growth of uncontrolled cancer cells in the brain and it may be either 
malignant [71] orbenign [74]. The benign or low-grade (grade I and II) [75] have homogeneous or similar 
structures and they do not have any cancer-causing cells [83]. The malignant or high-grade [70] (grade III 
and IV) has a non-similar or heterogeneous structure that includes the cancer-causing cells. While 
comparing the low-grade with the high-grade brain tumors, the low-grade brain tumors [68] are slow 
growers whereas the others are rapid growers. The major concern of the radiology department is on the 
early detection and diagnosis because the low-grade brain tumor can enhance into a high-grade brain 
tumor [69] if it’s left untreated. 

The researchers deploy one of the best image techniques called brain MRI [86] to detect the tumors in 
the brain as well as to design the progression of tumors in the treatment and detection  [80] stages. 
Because of its high resolution of images, the MRI [87] images made an enormous crash in the field of 
automatic medical image analysis, due to the capability of finding the abnormalities within the brain 
tissues and providing more information about the brain structure. There are various automated 
techniques are presented by the researchers for brain tumors [76] type classification [89] and detection by 
utilizing the MRI [88] images. Thereby the scanning and loading of medical images to the computer is 
made possible.  

Brain tumors [85] [90] are more harmful if they remain untreated because they affect healthy brain 
cells and may stretch out to other parts of the brain or spinal cord. Hence, the location of the brain tumor 
[72] has to be detected as well as classification and identification are needed in advance. The observing 
and tracking of the tumor-affected region by the doctor is aided by improving the new imaging techniques 
at various stages. Hence the suitable diagnosis [81] by using this image scanning can be made successful. 
In the field of medical image classification, the selection of the best subset for providing increased 
accuracy in reduced time is said to be an open challenge. Because of the shape variation of brain tumors 
[73] and their location and appearance, tumor segmentation and classification are made difficult. Many 
techniques are deployed for brain tumor classification. Some of them are spectral clustering, Fuzzy C-
means, SVM, Neural network, and so on. Even though the spectral clustering [77] is good enough, it 
suffers because of itseigen decomposition that poses dense affinity matrix production. Similarly, the fuzzy 
C-mean [78] [79] has a drawback of higher processing time.  

In this survey, 65 papers were reviewed under the brain tumor classification and the analysis was 
made. The review is prepared on both the classification and segmentation algorithms in terms of 
performance level. Furthermore, the analysis of optimization algorithms, image modalities, and datasets 
is also performed in this review. The organization of this survey is as follows: The literature review is 
explained along with the chronological review in Section 2. Section 3 describes the survey on brain tumor 
classification. Research gaps and challenges are described briefly in Section 4 and the conclusion is given 
in Section 5. 



  
Multimedia Research Vol.7 No.1 Jan 2024 
 

17 

2. Literature Review 

2.1 Related Works Based on  Brain Tumor Classification 
In 2018, Bahadure et al. [1] performed an investigation on various segmentation techniques, to enhance 
the tumor detection performance. The GA was deployed to improve the classification accuracy. Further, 
the results were analyzed under some measures. In 2018, Kaur et al. [2] developed a hybridization of 
Fisher and the PFree Bat optimization algorithm for the MR brain tumor image classification. Choosing 
an optimal subset in minimum time with maximum discriminatory ability was the main aim of this 
research work. In 2018, Tong et al. [3] introduced initially, the pre-processed MRI images for noise 
reduction, and after that for extracting the nonlinear features to design five adaptive dictionaries made by 
kernel dictionary learning. In healthy and pathological tissue differentiation, this made a significant 
improvement. 

In 2018, Mohsen et al. [4] utilized the classifier named Deep Neural Network classifier to classify the 
brain MRI datasets. The DWT and PCA were combined along with the classifier and the execution was 
made. In 2018, Angulakshmi et al. [5] implemented the brain tumor segmentation method by two 
processes (a) finding the tumorous region and (b) segmentation of these brain tumor tissues. The 
simulation result has explained that the implemented model possessed betterment over the other 
traditional models. In 2018, Virupakshappa and Amarapur [6] extracted wavelet coefficients modified 
chief sketch such as GLCM, Gabor, and moment invariant features. The AANN methodology was deployed 
for the classification process and the optimization of the neuron layer was made by WOA. 

In 2018, Rajesh et al. [7] have proposed a system to classify and detect the brain tumors. In this, the 
tumor classification was carried out by PSONN, and the feature extraction was performed using RST. The 
result was obtained under the classification of two: abnormal or normal. In 2018, Shanmuga priya and 
Valarmathi [8] focused on tumor and edema segmentation and was based on Kernel-based fuzzy c-means 
and skull stripping techniques. Further, the incorporation of the Graph cut algorithm was also made for 
finding the definite cut points among the tumor and edema.  The proposed model provides a better 
performance thanthe other algorithms. In 2018, Aswathy et al. [9] proposed an algorithm to identify 
tumors from brain MRI images to optimize the existing feature set. Moreover, the GA was employed for 
the optimization of these subsets. The model outperforms the conventional models like fuzzy-based and 
level-set methods.  

In 2018, Iqbal et al. [10] a review of the multiclass classification of brain tumors by utilizing the MRI. 
XX and XY were the two categorizations of this classification and were further subdivided into three 
classes. The simulation was made and analyzed with the other traditional algorithms. In 2018, Kaur et al. 
[11] developed a Neural Network Ensemble and Jaya algorithm for maximizing the accuracy and for 
segmentation, respectively. The performance was compared with PSO and GA algorithms. Further, the 
classification based on benign or malignant tumors was also discussed. In 2018, Shree and Kumar [12] 
gave attention to GLCM extraction, DWT-based brain tumor region, and noise removal techniques for 
improving performance and reducing complexity. The training and test performance was made by a 
neural network classifier. The investigational result provides better accuracy. 

In 2018, Vallabhaneni and Rajesh [13] presented an automatic detection technique for brain tumors 
within noise-distorted images. EATVD was the technique that was deployed for denoising the image. The 
detection of tumors was made by the features that use the class SVM. In 2018, Rad and Mosleh [14] 
introduced a new threshold-based segmentation method for the automatic diagnosis of brain tumors. 
Based on the beta mixture model and LA, the segmentation was made. The binary classifiers that were 
used in this were SVM, KNN, and DT. SVM classifier with linear kernel was used to obtain the best 
accuracy. In 2017, Usman and Rajpoot [15] proposed a segmentation and classification method of brain 
tumors for imaging scans in multi-modality magnetic resonance. Here, the feature was extracted from the 
preprocessed images and then was supplied for prediction under five classes by a random forest classifier.  

In 2017, Lakshmi et al. [16] projected a segmentation and classification model for dividing tumor 
regions and identifying abnormalities. The extraction and optimal selection methods were used for 
classification enhancement and then subjected to SVM and PKC. Improved PKC performance was shown 
by the result. In 2017, Soltaninejad et al. [17] introduced an automatic model to detect and segment the 
anomalous tissue from FLAIR-MIR that was connected with a brain tumor. For classifying every 
superpixel into tumor and non-tumor, ERT and SVM were compared and the results were analyzed. In 
2017, Kaur et al. [18] implemented a density measure feature to classify the MRI image of a glioma brain 
tumor. The enhanced CEEMDAN and Hilbert transformation model was used to derive the implemented 
features. The stimulation outcome has shown a better accuracy of the implemented model. 

In 2016, Havaei et al. [19] have investigated the interactive brain tumor segmentation and its 
problems. These issues were rectified by proposing a semi-automatic method that trains and generalizes 
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the segment of brain tumors based on fewer reduced interactions of users. The developed model 
outperforms the conventional one in terms of accuracy. In 2016, Anitha and Murugavalli [20] introduced 
an image interpretation based on explicit and organized brain MRI classification. The segmentation and 
classification were made successfully by the K-means algorithm and two-tier classification approach 
respectively. Using the real data sets, the proposed model was validated. In 2016, Artzi et al. [21] 
developed a model based on DCE-MRI for distinguishing lesion areas in every scan within treatment-
related changes vs. PD. The major clinical significance was included in results for guidance of targeting 
biopsy, early prediction of radiological outcomes, and preoperative planning in patients with brain tumors 
of large grade. 

In 2015, Ritschel et al. [22] aimed attumor detection using the CEUS image of tissue perfusion. Based 
on local perfusion variations, CEUS can imagine the tumor. The development of an automated CEUS 
classifier was made to identify the tumor borders and tissues. In 2015, Tsolaki et al. [23] used the CDSS 
for the diagnosis and classification of brain tumors. The combinations of multi-parametric MRI data sets 
were used by the FASMA system and were implemented as CDSS. Even in the misclassified cases, the 
correct diagnosis was provided by FASMA. In 2015, Jayachandran and Sundararaj [24] utilized the co-
occurrence matrix and histogram for extracting the texture feature of every segment for classification. The 
SVM for automatic classification was trained by the designing of the fuzzy logic-based hybrid kernel in the 
classification process. The experimental result poses better robustness. 

In 2009, Velez et al. [25] implemented a decision-supporting distributed agent-based system to 
prognosis and diagnosis the tumor in the brain. The main objective of this was to improve brain tumor 
classification by utilizing this support scheme for secure connection of networks in medical centers. In 
2015, Goughari and Mojra [26] utilized the technique named “haptic thermography” which was coupled 
with an artificial tactile sensing method for searching the tumor presence with normal tissues relative to 
eminent temperature. This technique's resultant outcome was proven with appropriate temperature 
distribution. In 2015, Demirhan et al. [27] developed an algorithm for segmenting the brain MRI as WM, 
CSF, GM, edema, and tumor. SOM performs the segmentation, which was fine-tuned with LVQ and 
trained with an unsupervised learning algorithm. The simulation was made under edema and tumor 
detection. 

In 2015, Ciulla et al. [28] investigated the human brain tumor that was detected via. MRI using the 
signal-image post-processing approaches namely Intensity-Curvature Measurement Approach. The 
outcome has shown that the signal resilient to interpolation and the intensity-curvature function were 
capable of adding extra information. In 2015, Arakeri and Reddy [29] implemented an accurate and 
automatic CAD system based onan ensemble classifier to avoid human errors in brain tumor diagnosis 
and to characterize brain tumors as malignant or benign. In 2014, Wu et al. [30] introduced a new method 
to surmount the limitations of this research work. Some of the algorithms were used to segment the 
multimodal MRI into super pixels. The multi-level Gabor wavelet filters were deployed to extract the 
features from these super pixels. 

In 2014, Padma and Sukanesh [31] developed a model for selecting and finding the co-occurrence 
texture features and dominant run length with every slice of wavelet approximation tumor region that has 
to be segmented using the SVM. The implemented model attains high classification accuracy and 
segmentation. In 2014, Hwang et al. [32] introduced an automatic tumor segmentation model for the 
images of MRI. The tumor segmentation was treated as the issue in classification. The classification of 
every voxel into various classes was made by LIPC. This model outperforms the conventional models in 
terms of average dice similarities. In 2013, Nanthagopal and Rajamony [33] presented the grouping of 
WST that was attained from two-level WCT and DWT to classify the brain tumor as malignant and 
benign. For classification, the PNN was constructed. This implemented PNN output was compared with 
the existing models. 

In 2013, Sachdeva et al. [34] have studied about the feature space dimensionality reduction using 
PCA. The ANN was then deployed to classify these six classes and this technique was called as PCA-ANN 
technique. The simulation outcome has revealed a better accuracy. In 2013, Wu et al. [35] developed a 
narrative method called a semi-automatic segmentation model based on individual and population 
information statistically for segmenting brain tumors. In brain tumor segmentation, the model provides 
better robustness. In 2013, Islam et al. [36] developed a thorough mathematical derivation for the mBm 
model and a narrative algorithm for extracting the spatially varying multi-fractal characteristics. After 
that, the brain tumor segmentation method based on the multi fractal feature was implemented. The 
obtained result outperforms the conventional models. 

In 2009, Gomez et al. [37] a review of the non-published valuation of prognostic methods with hidden 
cases in various centers that were subsequently acquired. The evaluation was made possible by the 
multicentere TUMOUR project that was constructed over earlier knowledge from the INTERPRET 
project. In 2011, Naami et al. [38] aimed to investigate the maximizing possibility of type detection in 
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brain cancer with no real biopsy system. For tumor type detection, the implemented model associates the 
statistical and image analysis. The performance of this model was made on real patients with brain 
tumors. In 2009, Song et al. [39] introduced a classification model for brain tumor tissue’s semi-automated 
segmentation. The normal and tumor tissues were classified using the interactive hint classifier. Also, the 
implementation of a non-parametric Bayesian Gaussian random field was made in semi-supervised mode. 

In 2008, Corso et al. [40] have developed an automatic segmentation of heterogeneous image data. The 
Bayesian formulation was used to incorporate the soft model assignments into affinities calculation. The 
weighted aggregation algorithm was used for segmentation. In 2010, Farias et al. [41] applied advanced 
soft computing and signal processing strategies for finding various kinds of brain tumors in humans. The 
biomedical spectral size and the major feature extraction were reduced by the Wavelet transform and for 
classification, the SVM and NN were used. In 2013, Thorsen et al. [42] introduced a multiclass random 
forest algorithm called the MethPed classifier that was based on DNA methylation profiles from a lot of 
subsets of pediatric brain tumors. The result thus obtained revealed that this Methpad efficiently 
classifies the brain tumor.   

In 2013, Arakeri and Reddy [43] introduced an intellectual CBIR approach to diagnose the brain 
tumor. For this, the implemented model uses two steps: (a) Classify the query image and (b) retrieve 
similar MR images. The simulation outcome poses the better effectiveness of this model. In 2017, Gupta et 
al. [44] intended to discover the quantitative parameters that were non-invasive from three-dimensional 
MRI images of the brain. The classification was the first step and after that, the analysis wasmade. The 
result has shown a better classification by achieving large accuracy. In 2015, Baladhandapani and 
Nachimuthu [45] developed a classification approach for MR images in 3D form based on spiking neuron’s 
third-generation network. Also, the accessing was made with multi-dimensional co-occurrence matrices 
implementation and pathological tumor tissue and normal brain tissue features identification. 

In 2015, Suganami et al. [46] evaluated the properties of physicochemical LP-iDOPE for brain tumors 
as a clinically exchangeable NIR imaging nanoparticle. The neurosurgeons hence attain more complete 
resection and accurate identification by the property of this LP-iDOPE. In 2014, Rshim et al. [47] 
represented the segmentation approach using SVM, and the texture analysis was made by using 3D 
feature extraction for the testing models. The results of this were made and analyzed and pose a 
betterment over the other approaches. In 2016, Genevois et al. [48] aimed to assess the effectiveness of 
BLI for glioblastoma cell lines and tumors by new luciferase Nluc and also involved the systemic 
metastasis and deep brain tumor’s applications while combining into Fluc. The result has shown that in 
vitro, Nluc attains higher activity than Fluc. 

In 2016, Naser et al. [49] studied the grading of primary brain tumors for accessing the helpfulness of 
MRS. Based on the histopathology, the tumors were subdivided into low-grade and high-grade. Further, 
the calculation of resulting specificity, sensitivity, and accuracy was made. In 2018, Kanmani and 
Marikkannu [50] developed the TBRO-based segmentation of brain tumors to enhance the effectiveness of 
classification accuracy and minimize the recognition complexity. The experimental result has shown 
betterment over the classification process. In 2017, Jamlos et al. [51] applied the Hybrid graphene–copper 
ultra-wideband array sensor for microwaving successfully the imaging technique that was utilized to 
detect and visualize the human brain tumor. The signal was transmitted and received this backscattering 
signal by using the sensor. 

In 2017, Ural [52] proposed the computer-based brain tumor detection technique in MRI imaging. The 
tumor areas in the brain were detected and localized by deploying the PNN and advanced image 
processing techniques. The diagnostic outcome provides larger accuracy on classification. In 2017, Parikh 
et al. [53] performed a study on the diagnosis of primary brain tumors with MRI-verified acute ischemic 
stroke. The recurrent thromboembolism and ischemic stroke were the outcomes of primary and secondary 
features. From this, the result has revealed a high risk of stroke for primary brain tumor patients. In 
2014, Violette et al. [54]used the ICA technique for separating venous and arterial perfusion. In brain 
tumors, the overlapping of arteriovenous overlap or AVOL may occur. During the diagnosis of a brain 
tumor, the DSC was attained by separating two contrast boluses. 

In 2011, Noreen et al. [55] developed an FTIR imaging based on collagen contents for histopathology 
examination of tumors. The experimental evaluation was made and the result was analyzed in terms of 
cologne presence in tumor cells. In 2009, Bohringer et al. [56] analyzed the specimens on biopsy of brain 
tumors in humans and also presented a study on post-image acquisition processing and intra operative 
OCT of brain tumors in humans for non-invasive imaging. In 2014, Jeyachandran, Dhanasekaran [57] 
proposed a robust brain tumor classification model robustly on the structural analysis of both tumorous 
and normal tissues. The pre-processing, feature extraction, segmentation, and classification were made in 
this implemented system. 

In 2016, Nie et al. [58] implemented an instrument called an integrated TRF-DR spectroscopy 
instrument for acquiring spatially resolved diffuse reflectance spectra and also time-resolved fluorescence 
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spectra for brain tumor margin detection. The result revealed that the model provides clear accuracy. In 
2016, Suet al. [59] developed an automated cell detection approach by utilizing adaptive dictionary 
learning that was used to handle cell appearance variations and sparse reconstruction based on split-
touching cells. In 2016, Dolz et al. [60] presented the SVM for segmenting the MRI image on the 
brainstem in brain cancer multicentre context. In the segmentation of the brainstem, the proposed model 
provides betterment over the other current models in terms of segmentation time and volume similarity 
metrics. 

In 2007, Krafft et al. [61] defined the IR spectroscopy approach that was applied to the astrocytic 
gliomas in humans and they were ranked from one to four in accordance to malignancy. Further, the 
discussion was made over the IR spectroscopic imaging applications, which was the tool for brain tumor 
diagnosis. In 2007, Reynolds et al. [62] developed a model for creating possibilities of tumor class from 
anatomical location. Also, a method was presented for verifying the network’s usefulness based on the 
possible priority was combined and created with the tumor classification. In 2018, Sharma et al. [63] 
implemented an algorithm for achieving the global thresholding value for a particular image and for 
automating the image segmentation. The Differential Evolution algorithm embedded with the OTSU 
method and trained neural network was deployed for future usage for determining the optimal threshold 
value.  

In 2018, Gupta et al. [64] aimed to implement a decision support system clinically for effectively 
assisting clinicians and radiologists in the real world. The fusion of MRI pulse sequences was utilized for 
tumor identification. The segmentation was made by adaptive thresholding. The detection and the 
grading for severity were done by the decision support system. In 2014, Choi et al. [65] focused on 
evaluating the ALDH potential as a BTIC marker that was capable of maintaining stem cell status in 
primary brain tumors. The cell subpopulation contained in the brain tumor has a large level of BTIC and 
ALDH features. 

2.2 Chronological Review 
Fig. 1 illustrates the contribution percentage of the papers and their chronological review. Here, the count 
of 65 papers was taken and the analysis was made under the contribution percentage according to the 
years. The contribution of papers with the least count is 1.54% and that are established in 2008 and 2010. 
3.08% of papers are published in the year 2007 and 2011. 13.85% of papers are taken from the years 2015 
and 2016. Furthermore, the reviewed papers of years 2018, 2017, 2014, 2013, and 2009are 26.15%, 
12.31%, 10.77%, 7.69%, and 6.15% correspondingly of the total contribution. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Representation of Chronological review 

3. Study on Various Brain Tumor Classification and Segmentation Models 

3.1 Classification Algorithm Analysis 
In this, various papers are reviewed under the brain tumor classification algorithms and are 
diagrammatically given in Fig. 2. The most common algorithm for classification that is used in these 
reviewed papers is SVM, ANN, PNN, KNN, and neural network classifiers. The SVM classifier is deployed 
in the papers [9] [13] [14] [21] [25] [30] [43] [44] and [47]. The kernel-based SVM is the classification 
algorithm that is employed in [57]. In [6] [34] and [43], the ANN classifier is used for classification 
purposes. FF-ANN is the advanced version of ANN that is implemented in [16]. The PNN classifier is used 
as the methodology in [12] [33] [52] and [31]. The neural network classifier is the classification 
methodology that is implemented in [4] [11] [27] [40] and [63]. PSONN is the algorithm deployed in [7]. In 
[15] [19] [35] and [43], the KNN classifier is used. The rest of the papers use various algorithms for brain 
tumor classification. Some of the paper that uses other algorithms are [1] [2] [10] [20] [28] [36] [48] [50] 
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[60] and [64]. Some of the other algorithms are listed as follows: genetic algorithm, kernel clustering, 
graph cut algorithm, ICA, LDA, ITI, SNN, MP-KDD algorithm, NB classifier, Methpad classifier, and so 
on. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
   

 
 

Fig.2. Analysis ofClassification algorithmsover reviewed papers 

3.2 Segmentation  Algorithm Analysis 
The analysis of the segmentation algorithm under the brain tumor diagnosis models is illustrated in Fig.3. 
The most commonly used segmentation algorithm in these reviewed papers is the SVM classifier and it is 
deployed in [9] [31] [33] [47] and [60]. The skull-stripping is the algorithm used for the segmentation 
process in [57] and [63]. Some of the others algorithm that are used in these reviewed papers for the 
segmentation process is given as follows: watershed segmentation is the methodology that is deployed in 
[1].In [3], the fuzzy c-means method is used. Spectral clustering is the algorithm that is implemented in 
[5]. In [10], the super-pixel segmentation method is employed. DWT is the methodology that is utilized in 
[12]. Wavelet-based texture segmentation is the algorithm that is developed in [15]. The author introduced 
a   k-means algorithm in [20]. In [21], the ICA is used. The graph-based seeded segmentation is deployed 
in [32]. The methodology named weighted aggregation is implemented in [39]. The SNN technique is used 
in [45]. In [65], the adaptive global threshold is used as the segmentation algorithm. Some other methods 
are also deployed in this research work and are clearly explained briefly in Fig. 3. 
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Classifier 
[9] [13] 
[14] [21] 
[25] [30] 
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optimization 
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(PSONN) [7] 

KNN 
Classifier 
[15] [19] 
[35] [43] 

Others 
Genetic algorithm [1] 
 Fisher Criteria [2] 
 Kernel clustering [3] 
 Classification forest [5] 
Graph cut algorithm [8] 
 Multiclass Classification [10] 
Extremely randomized tree-based Classification 
[17] 
Quantitative metric-based classification [18] 
 Two-tier classification approach [20] 
Linear discriminant analysis (LDA) [22] 
 Multiclass classification [23] 
Fuzzy logic-based hybrid kernel [24] 
Intraoperative Thermal Imaging (ITI) [26] 
 Intensity-Curvature Measurement [28] 
 Ensemble classifier [29] 
Local independent projection-based classification 
(LIPC) [32] 
 Adaboost classifier [36] 
Fisher’s rank-reduced version of LDA FLDA) [37] 
Region Growing Threshold [38] 
Prior voxel-based classification [39] 
 Soft computing strategies [41] 
MethPed classifier [42] 
SNN [45] 
 LP-iDOPE, [46] 
 Luciferase NanoLuc [48] 
MR spectroscopy (MRS) [49] 
MP-KDD algorithm [50]  
Hybrid graphene–copper UWB array sensor [51] 
ICA [53] 
ICA [54] 
Multivariate correspondence factorial analysis [55]  
Intracranial glioma model [56] 
Diffuse Reflectance Spectroscopy Instrument [58] 
Adaptive dictionary learning [59] 
Radial basis function [60] 
Supervised classification [61] 
MRS classifier [62] 
Naive Bayes (NB) classifier [64] 
Brain tumour initiating cell (BTIC) marker [65] 
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Fig.3. Analysis of segmentation algorithms in reviewed brain tumor diagnosis models 

3.3 Performance  Analysis 
The performance measure of the reviewed work under brain tumor classification is demonstrated in Table 
I. The performance is measured and analyzed under various measures that are employed in this 
contributed paper. Some of the measures are sensitivity, specificity, precision, time, dice score, mean, std-
dev, recall, energy, and error. The sensitivity and specificity have attained the maximum contribution of 
41.54% and 38.46% respectively of the overall contribution. The precision is taken as the performance 
measure in 13.85% of the total contribution. 7.69% of the total contribution has used the measures like 
time and mean. The dice score is the measure used by the 9.23% of the total contribution. The std-dev and 
error measures have been used as the measure in various reviewed papers, which is 4.62% of the total 
contribution. Measures like recall and energy have been used in many papers, which is 3.08% of the total 
contribution. Some of the other performance measures that are used in this reviewed work are 
classification rate, normalized density, frequency, lifetime, viability, and so on. 
 
Table 1. Analysis of Performance measure for brain tumor classification

Citation Sensitivity Specificity  Precision  Time Dice 
score 

Mean  Std-
dev 

Recall  Energy  Error  Other
s  

[1]           

[2]           

[3]           

[4]           

[5]           

[6]           

[7]           

[8]           

[9]           

[10]           

[11]           

[12]           

[13]           

[14]           

[15]           

[16]           

[17]           

[18]           

[19]           

[20]           

[21]           

 

 

 Segmentation Algorithms 

SVM 
classifier 
[9] [31] 
[33] [47] 
[60] 

Skull-Stripping 
 [57] [63] 

Others 
Watershed Segmentation [1] 
Kernel sparse Coding [3] 
Fuzzy C means [4] 
Spectral clustering [5] 
Cognition based Modified Level Set Segmentation [6] 
FCM based multilevel image segmentation [8] 
Super-pixel based segmentation [10] 
DWT [12] 
SOM clustering [13] 
BMM- LA [14] 
Wavelet-based texture segmentation [15] 
M-ACA-Based Tumour Segmentation [16] 
Super-pixel segmentation [17] 
Quantitative metric cum classifier [18] 
K-means algorithm [20] 
Independent component analysis (ICA) [21] 
Self-Organizing Map [26] 
Wavelet decomposition and modified FCM (MFCM) [29] 
Super-pixel over-segmentation algorithm [30] 
Graph-based seeded segmentation [32] 
Content-based active contour [34] 
Graph cuts segmentation [35] 
PTPSA fractal-MultiFD [36] 
Weighted aggregation [39] 
Wavelet decomposition and MFCM clustering [43] 
FMRIB automated segmentation tool (FAST) [44] 
SNN [45] 
Threshold Based Region Optimization [50] 
Adaptive global threshold [65] 
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[22]           

[23]           

[24]           

[25]           

[26]           

[27]           

[28]           

[29]           

[30]           

[31]           

[32]           

[33]           

[34]           

[35]           

[36]           

[37]           

[38]           

[39]           

[40]           

[41]           

[42]           

[43]           

[44]           

[45]           

[46]           

[47]           

[48]           

[49]           

[50]           

[51]           

[52]           

[53]           

[54]           

[55]           

[56]           

[57]           

[58]           

[59]           

[60]           

[61]           

[62]           

[63]           

[64]           

[65]           

3.4 Maximum Attained Measures 
The maximum achieved measures from the contributed papers are given in Table 2. In this, both the 
sensitivity and specificity are the measures that are used frequently in the reviewed papers and have 
attained the maximum value of 99.1 and 97.5 respectively. The precision measure attained the value of 
95.22, while the time was 48.2s. The dice score, mean, std-dev, recall, energy, and error have accomplished 
the maximum value of 0.87, 9.88, 42.75, 97.35, 0.975, and 0.12 respectively.  
 

Table 2. Maximum Attained Measures 
Measure  Best performance value Citation 
Sensitivity  99.10 [2] [3] [5] [6] [7] [8] [10] [11] [14] [15] [16] [17] [19] [20] [22] [24] [27] 

[29] [31] [33] [36] [44] [49] [50] [52] [57] [64] 
Specificity 97.50 [2] [3] [5] [6] [7] [8] [10] [11] [14] [15] [16] [19] [20] [22] [24] [27] [29] 

[31] [44] [49] [50] [52] [57] [63] [64] 
Precision  95.22 [4] [16] [17] [40] [43] [50] [59] [63] [64] 
Time  48.2s [5] [8] [11] [39] [60] 
Dice score 0.87 [3] [5] [16] [17] [19] [36] 
Mean  9.88 [1] [9] [31] [35] [38] 
Std-dev 42.75 [1] [35] [38] 
Recall  97.35 [43] [59] 
Energy 0.975 [1] [12] 
Error  0.12 [22] [32] [36] [37] 



  
Multimedia Research Vol.7 No.1 Jan 2024 
 

24 

3.5 Accuracy Analysis 
Fig. 4 demonstrates the analysis of accuracy measures under the brain tumor classification. Almost in all 
reviewed papers, the main goal is to enhance the accuracy rate of the classification process. Only 1.54% of 
the contribution has attained an accuracy that falls in the range of 81-85. Moreover, the accuracy has 
achieved the contribution of 6.15% within the range of 85-90. 13.85% of the contribution has accomplished 
the accuracy that lies in the range of 90-95. In the range 95-100, the accuracy has obtained a contribution 
of 15.38%. 
 
 
 
 
 
 
 
 
 
 
 

Fig.4.Analysis ofaccuracy measure 

3.6 Optimization Algorithm Analysis 
Fig. 5 explains the analysis of the optimization algorithm in the classification of brain tumors. 
Optimization algorithms are also called meta-heuristic algorithms that are developed under the 
inspiration of nature. From the reviewed papers, it is observed that only 18 % of the reviewed papers have 
used optimazational gorithms in the classification process. The rest of 82% haven’t used any optimization 
algorithms. The GA is the methodology that is used for the classification process in [1] [9] [17] and [45]. 
The PFree Bat optimization algorithm is the modified Bat algorithm and is deployed in [2]. In [6], the 
WOA is implemented. The PSO is the used methodology for classification in [7] and [18]. In [11], the Java 
Algorithm is used for implementation. Priority particle CSA is the algorithm that is deployed in [16]. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5. Analysis of Optimization Algorithm 
 

Table 3. Optimization Algorithm in reviewed papers 

Optimization algorithm Citation 
Genetic algorithm [1] [9] [17] [45] 
PFree Bat optimization algorithm [2] 
Whale Optimization algorithm [6] 
Particle swarm Optimization [7] [18] 
Jaya algorithm [11] 
Priority particle cuckoo search algorithm [16] 

3.7 Analysis of Used Dataset 
The dataset analysis on the contributed papers is represented in Fig. 6.In fact, the experimentation is 
made by using different publicly available datasets. Some of the datasets that are used in these reviewed 
papers are BRATS, IBSR, DICOM, INTERPRET, and Harvard benchmark.  The BRATS is the dataset 
that is used in most of the reviewed papers, which is 23.54% of the overall contribution. The other 
datasets contribute about 1.54% only and they are given as follows: IBSR, DICOM, GBM, INTERPRET, 
and Harvard benchmark. 
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Fig.6. Analysisofused Dataset 

3.8 Analysis of Imaging Modalities 
Fig. 7 illustrates the analysis of the image modalities. Various researchers are made by using the image 
techniques in these reviewed papers. Some of the imaging techniques that are used in the reviewed papers 
are MRI, CT, and IR. MRI is the best imaging technique used for tumor detection. CT is used for creating 
a cross-sectional image of the body. This is also deployed in some papers to detect the tumor. The MRI is 
the most used imaging technique in the reviewed papers and the contribution of this is 82% of the overall 
one. Only 3% of the contribution has used the CT imaging. 
 
 
 
 
 
 
 
 
 
 

Fig.7. Analysis on imaging modalities 

4. Research Gaps and Challenges 
The automatic brain tumor segmentation main challenge has paid a major focus over the past few years. 
This is because the segmentation in the early stage is done based on threshold, region, and outlier 
detection. The threshold base is effective and simple, yet there is an excessive intensive similarity in the 
edge of normal and abnormal brain tissues. This is because of the high complexity of brain structure and 
hence used in the first stage of determining and location process. 

As the classification plays a major role other than identification, segmentation, and feature extraction 
process, its accuracy rate is very important. In this sense, the models should output accurate classification 
of brain tumors. The dataset with higher-resolution images from MRI is used to achieve better accuracy. 
To even attain higher accuracy, the classifier boosting technique will be adopted in the future thereby 
permitting the important benefits of brain tumor detection in the medical field. Early detection is an 
important factor in detecting the brain tumor effectively. Despite the availability of more techniques for 
tumor detection, still, the segmentation is still a complex and challenging one in the brain MR images. In 
the future, the used variables in the present work need modification to attain improvement in the future. 

The Brain tumor diagnosis is a challenging one because of the alteration in the location, size, and 
shape. Various techniques are adopted for aiding this tumor detection. Still, it needs enhancement over 
the detection and diagnosis, to use for the future purpose. The accuracy can be improved by combining one 
or more classifiers and the feature selection techniques. This has to be implemented in the future to 
obtain improved classification accuracy.  

5. Conclusion 
This survey has offered a thorough review of brain tumor classification. Here, the analysis was made 
under the various methods with their better achievements. The review has accomplished that the brain 
tumor classification has achieved a better result and in conclusion 
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 The review of 65 papers under brain tumor classification was prepared and the conversation was 
made. 

 At first, the algorithms were analyzed for the process of classification and segmentation. The 
various algorithms that are used under this were revealed. 

 Consequently, the analysis was made in terms of accuracy and has shown that the reviewed work 
has attained better accuracy in the classification process. 

 Further, the analysis also reviewed the used optimization algorithms in the classification process 
 Moreover, the used dataset and the imaging techniques were also analyzed and reviewed as the 

diagrammatic representation. 
 Further, the performance measure along with the maximum accomplished measure was analyzed 

and labeled. 
 Finally, various research on challenges were also presented, so that it can be used in the future by 

the researchers on brain tumor classification.  
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