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Abstract: The current article aims to analyze student performance using some similarity measures. The analysis will 
result in a classification of the student based on how they usually take their lunch. Throughout the processes, we define 
some notions of similarity measures and finally select some measures to evaluate various data types of attributes. The 
Nearest-Neighbor approach is used for classification, with the K-Nearest-Neighbor (KNN) algorithm. At last we compare 
the performance on three data types: numerical, categorical and mixed data.  Finally, the result is tested and validated 
using the Python programming language. 
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1. Introduction  
In the real world, one will always try to find an answer to the question of whether two given objects are 
similar, or whether an object O1 is more similar to an object O2  compared to an  object O3. This question 
seems to be a problem that many domains would like to solve. In health, a medical doctor will prescribe 
medicine to the patient based on case similarity. He/She will try to answer the question, is this disease 
similar to the one seen before? Are vital organs similar to ones seen before? So, to make a decision, the 
notion of similarity appears in any manner. In education, when evaluating students' results or 
performance, to minimize time, the committee will decide sometimes for similar cases, this will help for 
time optimality and for objectivity in decisions. In agriculture, crops are varied based on the similarity of 
the seasons. And for many other domains, we can find how they are related to similarity. Actually, we will 
realize that similarity is the main problem in many domains. 

Now, to solve this problem, people dealing with data and models, namely data scientists, will try in 
the way to find a solution by training models for this task. Thus, for the prediction, analysis, and 
treatment of data they developed the notion of Similarity Learning. Similarity learning is defined as the 
process of determining a function, s(o1,o2) which finds the optimal relation between two different data 
items O1 and O2 in a quantitative way [3].  

Dealing with similarities, we will present in this work some uses of similarity measures by 
considering some case studies and that will be based on the types of data that we have. In the first part, 
we will investigate the theory of similarity learning according to the previous works done in the domain of 
data mining, and in the second part, we will choose some measures for each type of data and elaborate on 
some case studies. Finally, we will provide a classifier and incorporate the similarity measures so that we 
will be able to compare the performance of the classifier on different data types and using different 
measures. And we will try to use the classifiers to analyze a problem of students' performance on exams 
based on similarity learning. We will see from the analysis the classification of students based on Gender, 
Preparation of the test, performance on exams, and regularity in taking lunch. 

2. Similarity Measures and Metrics 
An important role is played by similarity in many machine learning problems such as classification, 
clustering, or ranking. For these problems, researchers built functions that could determine the 
similarity between attributes or objects in all the tasks[4]. These functions are tedious for real problems 
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and difficult to compute manually, many works have gone into learning from labeled data to similarity 
and metric learning[4]. 

Let consider that X  and Y , two data objects, with the form : 

 1 2 kx x , x , · · · , x and  1 2 ky y , y ,··· , y
 

Where k  
is the dimensionality, and each  1i ix ,  y for i k  , is a feature of the corresponding object. 

The features in our work will be of two types, either categorical or numerical. And the analysis will be 
made on each data type individually and on mixed features. If we talk about patterns, then the concepts 
of similarity and metric are reciprocal [5]. When we use similarity measures for patterns, we try to 
quantify the likeness between them. Also, when comparing patterns, it is very useful if they are 
represented in a metric space. For any set of elements characterized by the distance function between all 
pairs of elements, this property is important [5]. When we choose a distance d, d(x,y) has to follow 
some conditions, namely:   0d x,y  , where equality holds if and only if x y ,    d x,y d y,x

 
symmetry;       d x, y d x,z d z,y  triangle inequality. Note that in this article, for any distance that 

will be used, we will suppose that the conditions are verified and we will not have to prove that. The 
exception is made for the cosine similarity. It is not really a distance according to our definition. 

2.1 Categorical Data 

We consider objects whose features are categorical. Categorical data poses problems concerning 
similarity measures because generally, it is not possible to define a metric space with an implicit 
distance function when considering such type of data[5]. Some measures used for such type of data: 

2.1.1 Simple Matching 

Simple matching is the simplest of all similarity measures (Van Rijsbergen 1979, [5]). It is defined 
as 

    SM X,  Y   n X  Y                                                       (1) 

Where  n A is just the number of elements in set A. SM does not take into account the sizes of 

each set. 

2.1.2 Hamming 

The Hamming distance, originally, defined for binary codes can be applied to any ordered sets 
of equal length. This measure is defined by 
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If the features are binary the Hamming distance, simple matching measure, and the squared 
Euclidean distance (to be defined), become equivalent [5]. Many similarity measures are used for 
binary valued features. Thus, to use them we have to convert categorical features into binary 
features. 

2.1.3 Cosine Similarity 

For the categorical data, we can also use the cosine similarity. Between two documents for example 
we can find the cosine similarity between two documents. The cosine measure is defined by 
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The cosine measure ignores the relative frequencies and will require the transformation 
of data as in binary or in the numerical label. 
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2.1.4 Jaccard Similarity 

The Jaccard similarity of two sets X  and Y  , said Jaccard coefficient, is defined as the ratio between 
the size of the intersection of the two sets and the size of the reunion. We denote and define the Jaccard 
index (or coefficient) by 

||
||

),(
YX

YX
YXJ S 




                                                              
(4) 

And when we have binary vectors, we can define it as 
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with 1 dX x ,·( ··,x ) , 1 dY ,·(y ··,y ) and  0 1i ix ,y , . 

Note that the Jaccard distance measures the dissimilarity between sets and it is defined by 
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For our case study, we will use the Jaccard coefficient (5). Many other similarity measures can be 
used for categorical data such as Overlap, Fowlkes mallows, Mountford, etc. 

2.2 Numerical Data 
Many researchers are actually focused on categorical data because, indeed, many measures do not have 
complication when dealing with numerical data. For this reason, we will find that many measures 
are provided for numerical and actually, data scientists look at ways to adapt them to categorical 
features. Let us present some measures that can be used for numerical data : 

2.2.1  Lp -Norm, 1p   

Given  1X x ,··· , x n and  1Y ,·y ·· , y n , we define the distance 

1

1

n ppD is t ( X ,Y ) x yi i
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  
                                      (7) 

At specific values of p, we have well-known measures. 
 For p = 1, the Manhattan norm (distance) 

1

n
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 For p = 2: Euclidean norm 
1
22

1

n
D is t ( X ,Y ) x yi i

i

 
  
  
                                            (9) 

 For p = ∞ : Infinity norm 

   ii
i

yxYXDist  max),(                                            (10) 

Many things can impact the performance of these measures, namely, the dimensionality, the irrelevant 
features. 
 
2.3  Mixed Data 
In some circumstances, we have mixed data where a part of features (attributes) in the data is 
numerical and another part categorical. Let us try to give thinking about how we can deal with such 
type of dataset. Given two groups of data X ( X , X )n c and Y ( Y , Y )n c  where X , Yn n are 

subsets of numerical attributes and Xc, Yc are subsets of categorical attributes. 
To find the similarity in mixed data we use a weighted average. We define it as 

 1S im ( X , Y ) .N u m S im ( X , Y )   C a t S im ( X , Y )n n . c c                     (11) 
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Where NumSim is the similarity measure for the numerical data and Catsim is the similarity 
measure for categorical data. The function Sim is the new similarity measure for combined data. 
But, the value of the portion λ is difficult to decide. 

We can also use the Normalized Weighted average: 

 1
C a tS im ( X , Y )N u m S im ( X , Y ) c cn nS im ( X , Y ) .   .

cn
    

 
                    (12) 

Where c , n  are the standard deviation for the categorical and the numerical data. With this 

thinking, we will need to know, most of the time, the distribution of  the data. Another thought is 
that we can transform all the data in numerical, doing encoding and using a unique similarity 
measure for all the datasets. This second idea is the one that will be used in this article. But the 
consequence is that some information can be lost or you will have a huge dataset to deal with after 
transformation, that will not be supported  by the memory of the system. 

3. Similarity Learning 
For our learning task, we will have to analyze student performance in t h e  exam according to 
some attributes. We will consider for our dataset many attributes some of which are categorical and 
others which are numerical. 

For the analysis, we will not consider all the attributes provided by the data set. We will focus on 
gender, test preparation, and grades in Mathematics and in Reading. 

3.1 Mixed Data 
For our case study, since we are dealing with mixed data, we will consider the Jaccard coefficient as a 
similarity measure for the categorical data part and the Euclidean distance 2L −Norm as a  similarity 
measure for the numerical data. 

For the mixed data, the mixed similarity measure as our first thiking is to use the weighted average. 
And for that, we denote E   J   and define a new measure given  X ,  Y  as 

),().(),(. ccSnn2 YXJ1YXLJE 

         

(13)

 Where 2L  represents the Euclidean distance and sJ  indicates the Jaccard coefficient. 
We will have to verify if this similarity measure evaluates the similarity according to    our data set 

otherwise we redefine another expression, the purpose being looking for efficiency. In this work, due to 
the limited time of implementation and the purpose of the production of this report, we will use our 
second idea, which is to transform all the data into numerical data by encoding. Later, we will think 
about the implementation of the expression(13) and provide more theory related to the idea. 

3.2 Homogeneous  Data 
For homogeneity, we will consider the same dataset as in the mixed case study and  for each part, 
we will consider the data type corresponding to the case. The numerical part of the initial dataset will 
be used for similarity measure in the Numerical case, and the categorical part for the Categorical case. 

3.2.1 Numerical Data 
For the Numerical Case, we will use the Euclidean measure (metric or distance) 2L , 
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Even though it has some limits, it is a recommended measure for the proximity process and it is 
easy to manipulate and has other advantages. To compute the similarity we will have to 
normalize the Euclidean distance. This is helpful because sometimes the direction of the vector is more 
meaningful than the magnitude. The normalized distance, which defines our similarity, will be defined 
by 

1

1 2
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3.2.2 Categorical Data 
For the categorical case, we will use the Jaccard coefficient as a  measure to evaluate the 
similarity. The data will be provided by the categorical part of the initial dataset. Recall, the 
Jaccard is defined as 

1
2 2

1 1 1

d x .y X Yi iiJ s d d d X Yx y x .yi ii ii i i

 
   


  

                         (16) 

This assumed we have two vectors X and Y of the same dimension. Further explanation is 
given by the computation and the implementation of the data. 

we can also use the cosine distance (not a metric) to define the categorical data similarity since 
for non- binary sets it is difficult to use the Jaccard coefficient. 

3.3. Classifiers for Mixed Data 
We choose to work with the Nearest-Neighbor-based classifiers. Indeed, among the methods of 
supervised learning, the Nearest Neighbor rule achieves consistently high performance, without 
distribution assumptions at the beginning of the analysis. Also, since our problem will be using 
classification for prediction, we think this classifier is good for our learning choice. we will be using 
the KNN algorithm for the implementation and the analysis. 

4. Experiment and Evaluation 
This section describes the experimental analysis and the evaluation. The Dataset used in this work is Data:  
“HTTPS://WWW.KAGGLE.COM/SPSCIENTIST/STUDENTS-PERFORMANCE-IN-EXAMS”. 

Table 1 represents the sample of the data set used for the analysis. The student will be classified 
according to their lunch taken in a standard way or not taken (free) or reduced. 

4.1 Categorical data 
The extrait of the square matrix, which is represented in table 1, presents the Jaccard coefficient, 
between objects. Note that the size of the matrix is 100 × 100.  

Table 2 indicates the Jaccard similarity on Categorical encoded data. Jaccard similarity 
(coefficient) is 0 between the same object. For some objects, we will see that this coefficient is large 
and close to 1.0 which means there is a similarity (relation) between students. It is with respect to the 
gender and the test preparation. Lunch is a categorical attribute, but it will be used for prediction. 

4.2 Numerical data  
 
The extrait of the square matrix, which is represented in table 5.2, presents the similarity measure, 
here the normalized Euclidean distance (15), between objects with numerical attributes. The Euclidean 
distance was computed with respect to t h e  Math score and the Reading score. Note that the size 
of the matrix is 100 × 100. Table 3 summarizes the Euclidean measure of Numerical data. The 
Euclidean measure as present gives one when we find the similarity between an object and itself, in 
fact, the expression (15) gives one when the euclidean distance goes to zero. Looking at the table5.2, 
we will see that the two subjects are not related. These two attributes are independent (Math and 
Reading). 

 

Table 1: Dataset sample 

ID gender test 
preparation 

math score reading 
score 

lunch 

1 female none 72 72 standard 
2 female completed 69 90 standard 
3 female none 90 95 standard 
4 male none 47 57 free/reduced 
5 male none 76 78 standard 

4.3 Mixed data 
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For the mixed data we used the Euclidean measure since we were able to convert all the data into 
numerical types. The process is as in the Numerical case. The extrait of the square matrix that is 
presented is nothing else but the normalized euclidean measure on the mixed data. 

Note that the values in Table 4 are estimations. In the code, we also provide the similarity between 
attributes for this case. 

We can see by the mixed data that the similarity between students when considering all the 
attributes is very small. This means that, in this case, the performance is not related to the relation 
among students based on the difference attributes. We may be wrong according to some human 
realities. But by the collected data the analysis is clear, and we do not have to forget the fact of 
changing data types that could bring errors. 

4.4 Error Analysis and Evaluation 
For this section, we provide the variation of errors when k changes and evaluate the classifier on 
different case studies. Globally, we just see the variation of the errors at different k’s and the accuracy 
at training and testing of the data. 

4.4.1 Analysis of Numerical 
Fig 1 demonstrates the error analysis on the KNN classifier for numerical. Here, the mean error is calculated by varying 
the K-value.  
 

Table.2: The Jaccard similarity on Categorical encoded data. 

0 1 2 3 4 5 6 7 
0.0 0.667 0.00 0.667 0.667 0.0 0.667 0.667 
0.667 0.0 0.667 1.0 1.0 0.667 0.0 1.0 
0.0 0.667 0.0 0.667 0.667 0.0 0.667 0.667 
0.667 1.0 0.667 0.0 0.0 0.667 1.0 0.0 
0.667 1.0 0.667 0.0 0.0 0.667 1.0 0.0 

 

Table 3: Euclidean measure of Numerical data. 

0 1 2 3 4 5 6 7 8 ... 
1.0 0.052 0.0331 0.0332 0.1218 0.083 0.034462 0.022632 0.081 ... 
0.0519 1.0 0.0443 0.0246 0.067148 0.120771 0.0484 0.017785 0.0364 ... 
0.0331 0.0443 1.0 0.0171 0.043435 0.042604 0.333 0.013673 0.0241 ... 
0.0332 0.0246 0.0171 1.0 0.02717 0.027485 0.017574 0.060051 0.052 ... 
0.1218 0.0671 0.0434 0.02717 1.0 0.123899 0.0458 0.01953 0.051443 ... 

Table 4: Euclidean measure on mixed data. 

0  1 2 3 4 5 6 7 8 ... 
1.0  0.0518 0.0331 0.0331 0.119782 0.08302 0.03441 0.0226 0.0801 ... 
0.052  1.0 0.0441 0.0246 0.0665 0.119 0.0484 0.0177 0.036345 ... 
0.0331  0.0442 1.0 0.0171 0.0434 0.0426 0.2899 0.013670 0.024091 ... 
0.03312  0.0246 0.0171 1.0 0.0272 0.0275 0.0176 0.060051 0.051443 ... 
0.1198  0.0665 0.0434 0.0272 1.0 0.122 0.0457 0.019 0.0513 ... 
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Fig.1. Error on KNN for numerical 

 
Fig.2. Accuracy of training and testing at different k values. 

       Fig 2 exhibits the accuracy of training and testing at different k values. Here, the experimental 
analysis is performed by varying the K value. Moreover, the accuracy of the training set is higher, 
wherein the accuracy on test at the final iteration. 
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Table 5: Performance analysis of numerical 

 precision recall f1-score support 
free/reduced 0.00 0.00 0.00 8 
standard 0.60 1.00 0.75 12 
micro avg 0.60 0.60 0.60 20 
macro avg 0.30 0.50 0.37 20 
weighted avg 0.36 0.60 0.45 20 

 
Accuracy score on training: 0.75 
Accuracy score on testing: 0.7 

4.4.2 Analysis of Categorical 
Fig 3 demonstrates the error analysis of KNN for categorical. Here, the experimental analysis is 
performed by varying the K value and computing the mean error. When the number of iterations 
increases, the error gets reduced. 
       Fig 4 demonstrates the accuracy of training and testing at diverse k values. Here, the experimental 
analysis is performed by varying the K value and computing the accuracy.  
 

 
 

Fig.3.Error on KNN for Categorical 

 
Fig.4. Accuracy of training and testing at different k values. 
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Table 6: Performance analysis of Categorical 

 precision recall f1-score support 
free/reduced 0.00 0.00 0.00 8 
standard 0.60 1.00 0.75 12 
micro avg 0.60 0.60 0.60 20 
macro avg 0.30 0.50 0.37 20 
weighted avg 0.36 0.60 0.45 20 

 

Accuracy score on training: 0.6125 
Accuracy score on testing: 0.6 

4.4.3 Analysis of Mixed 
Fig 5 demonstrates the error analysis of KNN for Mixed data. Here, the experimental analysis is 
performed by varying the K value and computing the mean error. During the last iterations, the error 
gets increases. Fig 6 shows the accuracy of training and testing at diverse k values. Here, the 
experimental analysis is performed by varying the K value and computing the accuracy.  
 

 
Fig.5. Error on KNN for Mixed data 

 
Fig.6. Accuracy of training and testing at different k values. 

Table 7: Performance analysis of mixed data 

 precision recall f1-score support 
free/reduced 0.00 0.00 0.00 8 
standard 0.60 1.00 0.75 12 
micro avg 0.60 0.60 0.60 20 
macro avg 0.30 0.50 0.37 20 
weighted avg 0.36 0.60 0.45 20 

 

Accuracy score on training: 0.75 
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Accuracy score on testing: 0.7 

5. Conclusion 
The inspiration of this project was the fact that student can perform well or bad in the exam, and 
that can be related sometimes to the hunger or satisfaction. For our analysis, we tried to see if the 
attributes are related. If there are first similarities between students what we called object similarity 
and than tries to see if there are similarities between attributes what we called attributes similarity. 
Many cases are provided in the implementation. Evaluating all the case studies, we have seen that 
the Nearest Neighbor classifier perform well on the mixed data, with the Euclidean measure, 
compare to how it performs on the two other data types, using the Euclidean and the Jaccard, 
respectively on the numerical and the categorical. If we could add more attributes and more 
objects The result could totally change. 

For future work, we would try to implement the EJ measure, that uses two similarity measures, 
namely the Euclidean distance and the Jaccard coefficient, to evaluate the similarity between mixed 
data types. Or to investigate other similarities that can be matched together in the weighted 
average-oriented approach. Also, one could variate the measures when using the same classifier and 
evaluate its performance. One could change the classifiers and use the same measures for 
evaluation. 
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