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Abstract: Electric Vehicles (EVs) is found to be a capable method to enhance the transport systems. Nevertheless, higher 
supply of EVs leads to higher demand of electricity. An effectual technique to decrease this impact is to combine renewable 
energy sources (RESs) with charging infrastructure. This research aims to set up a dispatch policy using optimization 
theory for enhancing the economy of microgrid (MG) systems. The most significant intention is to lessen the functional cost 
of system while meeting system load requirements. Accordingly, the output constraints related to distributed power supply 
are optimized using Grasshopper Optimization with Genetic Algorithm (GOAGA). Further, the superiority of GOAGA is 
authenticated over existing works regarding wide-ranging measures. From the examination, the GOAGA model reveals a 
minimum cost value for C1, C2 and total cost over other techniques, therefore ensuring the superior economy of MG. 
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Nomenclature 

Abbreviation Description 
GOAGA Grasshopper Optimization with Genetic Algorithm 
DE Diesel Engine  
DG Distributed Generation  
EVs Electric vehicles  
EES Electric Energy Storage  
GHG Global Greenhouse Gas 
HVAC Heating, Ventilation and Air-Conditioning Systems 
MG Microgrid  
MKEM Micro-grid Key Elements Model 
PV Photo Voltaic  
RD Regulation Down  
RU Regulation Up  
RES Renewable Energy Sources  
WT Wind Turbine  

1. Introduction 
Nowadays, the transport is liable for 14% of GHG emissions [34]. The construction sector generates huge 
quantity of greenhouse gas emissions and is accountable for just about 35% of energy utilization owing to 
electric devices [3]. For energy domain, it is intended to reduce the energy and biological impact using 
proper strategies, depending on RES. Consequently, the implementation of HVAC systems were 
examined gradually in the earlier decades [9,10]. Moreover, the private transport is said to be the most 
important cause for contaminant, such as SOx, NOx, CO2, CO and particulate matters [11-13]. As this 
causes ecological issue, the diffusion of electricity is advantageous chiefly for crowded urban areas [14] 
[15].  

Consequently, to diminish the ecological cost of the sector, the exploitation of EVs has turned out to 
be a practicable option [16,17]. In past decades, EVs have turn out to be widespread, mainly due to its 
lesser flue gas emissions and minor reliance on oil. Alternatively, a significant crisis associated with EVs 
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is that, it’s superior penetration increase transformer congestion and leads to heavier power demand to 
the grid. A capable approach to develop the effect is to amalgamate local power generation like RESs into 
EV charging infrastructure [18,19]. 

Moreover, the incorporation of RESs to power EVs can assist in decreasing the pollutions, with a 
substantial decarbonisation effect and therefore, the effectiveness of resources could be developed [27] 
[28] [29]. Although EVs make zero direct emissions in urban areas, they are charged from the power grid 
that mostly depends on fuel-fossil power plants [20-23]. However, there is a deficient in precise analysis 
that takes account of interaction and integration of EVs with RESs [24,30,31].  

The arrangement of the paper is specified as: Section 2 portrays the review. Section 3 explains the 
problem formulation and section 4 portrays the optimal tuning of power limit constraints via GOAGA 
algorithm. Section 5 illustrates the outcomes and the paper is concluded by section 6.  

2. Literature Review 

2.1 Related Works 

In 2019, Jain et al. [1] have offered a model that determined the 2-way energy storage potential of 
several EV’s for contributing RD and RU to grid. The offered method employed a design that scheduled 
the power from grid by treating the mobility based electric constraints. Accordingly, 2 functioning places 
such as, residence and workplace were taken for stipulating the supplementary services. In addition, the 
performance of the modelled scheme was examined efficiently in terms of energy exploitation and cost.  

In 2020, Shi et al. [2] have modelled an effective approach that enhanced the economy and security of 
MG systems. The uncertainties of EVs wind power and SOC were formulated as “uncertainty prediction 
sets”. Furthermore, the adopted model has enhanced the absorption ratio of RES when regulating the 
discharging and charging of EVs. Thereby, minimum implementation costs were attained under varied 
constraints. The experimentation revealed that the offered technique considerably improved the 
capability and robustness over the existing schemes. 

In 2020, Hariri et al. [3] have designed a new generalized systematic method for reliability 
evaluation in smart grid. As a most important contribution, a state matrix was developed that observed 
the operation modes of smart grid by employing the graph theory. In addition, a novel wide-ranging 
model of PHEVs was developed that calculated the entire uncertainties of the system. Moreover, the 
performance of the developed technique was efficiently analyzed regarding sensitivity and precision.  

In 2019, Buonomano et al. [4] have analysed the financial, environmental and energy performances 
of forthcoming state, in which EV’s were related with efficient buildings equipped with EES. The 
financial system was dynamically simulated within the “TRNSYS environment”, wherein most important 
consideration was offered to the appropriate system control policies that intended at optimizing solar 
power for electricity purpose. At last, the development of the offered model was verified in terms of 
sensitivity analysis.  

In 2019, Imane et al. [5] have modelled a smart grid design that incorporated several embed main 
grid and MG. In addition, unique focus was offered to MG systems by employing a MKEM. The 
virtualization of developed grid model dealt with the issues associated with back-feeding, PV diffusion 
and supply irregularities. The simulated results revealed the impact of RES integration and it 
emphasized the function of batteries that sustained the system consistency.  

3. Problem Formulation 

3.1 Objective Function   

The intention of this work is to diminish the net emission and operation cost in a simultaneous way. The 
arithmetical modelling is described in this section. 

The objective function ( obj ) of modelled scheme is exposed in Eq. (1), in which 1W and 2W  indicate 
the 2 weighting coefficients that are presented to examine the impact of diverse values on the schedule 
system. 

 2211PEVP
CWCWMinobj

t,nt,i

       (1) 

The objective function 1C and 2C  are defined as exposed in Eq. (2) and Eq. (3), in which 1C  points 
out the operation cost of the system (along with the maintenance cost, operation and fuel) and 2C  refers 
to the environmental treatment cost ( that consist of NOx, SO2, and CO2). 
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In Eq. (3), g,iv  refers to the discharge coefficient pollutant of i type DGs; g,gridv  refers to coefficients of 

discharge pollutants of main power grid; gO  refers to treatment cost of thg  contaminant emission; iP  

refers to output power of thi  power supply; gridP  refers to grid power. In Eq. (2), tPEV  signifies the whole 

discharging and charging power of EVs at time t , and t,iP  signifies the kind of distributed power supply 

that satisfied   24....2,1t;PWT;PDEP t,lt,ht,i  . In addition, t,hPDE  signifies the thh DE output at time t , 

t,lPWT  signifies the thl WT output at time t . The whole operation cost of the MG system in $(USA) take 

account of the fuel costs of DGs  fO , the operational and maintenance cost  OMO , the degradation 

cost of battery  BATO , and the transmission cost amid main power grid and the MG. The cost functions 
of objective function 1C are elucidated in Eq. (4) - Eq. (7). 
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In Eq. (4), 1C ; 2C ; 3C  refers to the cost factors of DE; nA ; nB ; nC  stands for the constraints of 

battery degradation cost; the t,buyN  and t,sellN  stands for the coefficients of transmission amongst main 

power grid to MG at time t ; 
t,gridP  and 

t,gridP  stands for the transmission power of main power grid and 

MG in that order and OMK  stands for the OM cost factor. In Eq. (6), dP point out the demand power. 

3.2 Constraints 

The output parameters linked with the distributed power supply is mainly addressed in the form of 
power limits, which consist of the output parameters of WT, output constraint of conventional power 
supplies in real-time, discharging - charging power constraints of EVs and power limit of grids:  

max
t,it,i

min
t,i PPP                 (8) 

H
tt PWTPWT0                  (9) 

max
buyt,grid

min
buy PPP                (10) 

max
sellt,grid

min
sell PPP                (11) 

max
t,dt,d PEVPEV0              (12) 

max
t,ct,c PEVPEV0              (13) 

Eq. (8) signifies the output constraint of DE in real-time, Eq. (9) refers to the output constraint of 
WT, and Eq. (10) and Eq. (11) refers to the grid power constraints of main grid and the grid power 
constraints of MG. Eq. (13) and Eq. (12) point out the discharging and charging power constraints of EVs 
in that order. 

4. Optimal Tuning of Power Limit Constraints Via GOAGA Algorithm  

4.1 Solution Encoding  

The presented scheme intends to accomplish 5 optimal factors namely, (i) optimal allotment of WT and 
DE (ii) optimal achievement of PDE  (iii) optimal achievement of PWT  (iv) optimal 

t,gridP  and (v) 

optimal 
t,gridP . The input solution offered to the GOAGA algorithm is exposed in Fig. 1. The optimal 

allotment of WT and DE is regarded for 24×5 (24 point out the hours and 5 point out the count of DG); 
i.e. for each hour, 5 DGs will be subjugated and its bound lies amongst 0 and 1. The DG with maximal 
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value is allotted with the WT, whereas, the residual 4 DGs are allotted with DE. Moreover, the PDE  
value lies amongst 1500kW and 500kW and it is considered for 24×4 (for every hour, 4 DGs will be 
exploited). The value of PWT  lie amongst 500e3 and 500e2 and it is considered for 24×1 (for every hour, 1 
DG is deployed). In addition, the optimal value of 

t,gridP lie amongst 0kW and 300kW and the optimal 

value of 
t,gridP lie amongst 0kW and 150kW and is measured for 24 hours.  
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Fig. 1. Solution encoding 

4.2 GOAGA Algorithm 

GA is a heuristic optimization scheme that is usually deployed for enhance the solutions and for 
resolving the multi-objective issues. However, the convergence speed of GA is inferior. Moreover, the 
GOA model is an optimization technique depending on the activities of grasshopper swarms in nature. 
The convergence speed of GOA is superior and simultaneously the accurateness of detecting the solutions 
is high. Thereby, the GA and GOA are merged to form the GOAGA technique. Hybrid techniques are 
found to be capable for resolving complex optimization issues. The steps in the GOAGA model [16] are 
portrayed below: 

Step 1: Initiate iPop (the random population), current iteration t , maximal value cmx , minimal value 

cmn and maximal iteration count L . 
Step 2: Evaluate the search agent fitness  
Step 3: The best search agent is regarded as T  
Step 4: While  Lt   move to following steps  
Step 5: Constraint c is updated as in Eq. (14) 

 
L

cmncmx
tcmxc


      (14) 

Step 6: For (every search agent), the distance among the grasshoppers is stabilized in ]4,1[ interval. 
Step 7: The position of present search agent is updated as per Eq. (15). 
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Accordingly, ija  refers to the distance among thi  and the thj  grasshopper and it is described 

as ijij JJa  . Moreover, r  strength of social forces and M  refers to count of grasshoppers. 

Step 7: Calculate fitness by means of Eq. (1) 
Step 8: Depending on minimal fitness, the best 2 solutions are found. 
Step 9: Update the position of search agent by means of the cross-over of GA and again. Evaluate 

fitness by means of Eq. (1). The finest two solutions obtained from GA and GOA is united. Again 
calculate fitness and carry the search agent to its original location.  

Step 10: Terminate  

5. Results and Discussions 

5.1 Simulation Procedure 

The developed GOAGA approach for improving the economy of MG system was executed in MATLAB 
and the related outcomes were noticed. As per the developed model, the cost analysis was performed 
regarding time (hour) by distinguishing it with other existing schemes like WOA [14], DA [15], CSA [12] 
and GWO [13]. In addition, stochastic analysis as well as robust analysis was performed in terms of 
power in kilowatt (kW). Table I exposes the environmental constraints that demonstrates the pollution 
and cost emission (kW). 
 

 



Integrating Renewable Energy Sources in Electric Vehicles via Optimization assisted Model 

39 

Table 1. Environmental constraints  
Type Treatment cost($/kg) Coefficient to Pollutant emission (g/kW) 
  Main grid WT DE 
NOx 1.1765 1.6 0 10.09 
CO2  0.0309 889 0 680 
SO2 0.8824 1.8 0 0.306 

5.2 Stochastic Optimization Analysis 

The analysis for GOAGA model in terms of stochastic optimization is exposed in Table II. As per the 
resultants in Table II, EVs discharged throughout peak hours assists DE to meet-up the load demand 
that lessen the high economical cost efficiently. Meanwhile, during 23.00 to 1.00, the load demand 
decreases while the WT output rise. At this instance, EVs are recharged to gratify the travel 
requirements of users for the following day that improve the utilization rate of WT power.  
 
Table 2. Examination on stochastic optimization 

Power in kW 
Time (hr) DE WT Pgrid+ Pgrid- 

16 100 900 500 0 
17 500 350 500 0 
18 250 450 500 0 
19 100 900 500 0 
20 100 1000 500 0 
21 100 600 500 0 
22 100 600 500 0 
23 0 700 450 0 
1 0 1000 200 0 
0 0 1000 300 0 
2 150 500 500 0 
3 400 700 500 0 

5.3 Analysis on Robustness 

The assessment for the GOAGA model regarding robustness is exposed in Table III. On evaluating the 
stochastic analysis with robust analysis, the resultants of robust analysis is found to meet more charging 
demands of EVs’ when there is lesser EVs and lesser WTs discharging loads. 
 
Table 3. Examination on robust optimization 

Power in kW 
Time (hr) DE WT Pgrid+ Pgrid- 

16 100 1000 500 0 
17 600 250 500 0 
18 450 250 500 0 
19 400 650 500 0 
20 400 700 500 0 
21 200 250 500 0 
22 200 350 500 0 
23 150 600 500 0 
3 500 200 500 0 
2 250 400 500 0 
1 0 650 400 0 
0 150 650 500 0 

5.4 Cost Analysis  

Table IV demonstrates the cost analysis of GOAGA model over compared approaches such as WOA, DA, 
CSA and GWO for diverse time intervals (hours). From the examination, the GOAGA model has depicted 
a minimal cost value for 1C  , 2C  and total cost over other techniques, therefore guarantying the enhanced 
economy of MG. Therefore, from the evaluation, it is clear that the GOAGA model has attained improved 
performance in cost assessment over the existing methods. 
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Table 4. Cost Analysis of developed scheme over conventional models for different hours 

 1C  2C  Total cost 

Hour 
WOA 
 [14] 

DA 
[15] 

CSA 
[12] 

GWO 
[1] 

GOAG
A 

WOA 
 [14] 

DA 
[15] 

CSA 
[12] 

GWO 
[1] 

GOAG
A 

WOA 
 [14] 

DA 
[15] 

CSA 
[12] 

GWO 
[1] 

GOAG
A 

1 0.0035 0.0035 0.0035 0.0035 0.0035 2.12 
×1008 

2.14   
×1008 

2.01 
×1008 

2.12 
×1008 

2.12 
×1008 

2.23 
×1008 

2.43 
×1008 

2.12 
×1008 

2.24 
×1008 

2.11 
×1008 

2 0.018 0.018 0.018 0.018 0.018 2.01 
×1008 

2.56 
×1008 

2.24 
×1008 

2.33 
×1008 

2.01 
×1008 

2.01 
×1008 

2.12 
×1008 

2.24 
×1008 

2.43 
×1008 

2.11 
×1008 

3 0.06 0.06 0.06 0.06 0.06 
2.25 
×1008 

2.23 
×1008 

2.13 
×1008 

2.34 
×1008 

2.12 
×1008 

2.14 
×1008 

2.12 
×1008 

2.02 
×1008 

2.35 
×1008 

2.11 
×1008 

4 0.0075 0.0075 0.0075 0.0075 0.0075 2.25 
×1008 

2.01 
×1008 

2.13 
×1008 

2.10 
×1008 

2.12 
×1008 

2.25 
×1008 

2.12 
×1008 

2.02 
×1008 

2.10 
×1008 

2.11 
×1008 

5 0.025 0.025 0.025 0.025 0.025 2.29 
×1008 

2.01 
×1008 

2.13 
×1008 

2.22 
×1008 

2.25 
×1008 

2.25 
×1008 

2.12 
×1008 

2.13 
×1008 

2.22 
×1008 

2.11 
×1008 

6 0 0 0 0 0 2.25 
×1008 

2.01 
×1008 

2.06 
×1008 

2.25 
×1008 

2.12 
×1008 

2.35 
×1008 

2.12 
×1008 

2.03 
×1008 

2.25 
×1008 

2.11 
×1008 

7 0 0 0 0 0 
2.12 
×1008 

2.01 
×1008 

2.61 
×1008 

2.23 
×1008 

2.12 
×1008 

2.14 
×1008 

2.12 
×1008 

2.04 
×1008 

2.12 
×1008 

2.11 
×1008 

8 0 0 0 0 0 2.56 
×1008 

2.01 
×1008 

2.01 
×1008 

2.24 
×1008 

2.12 
×1008 

2.15 
×1008 

2.12 
×1008 

2.12 
×1008 

2.23 
×1008 

2.11 
×1008 

9 0 0 0 0 0 
2.11 
×1008 

2.01 
×1008 

2.01 
×1008 

2.15 
×1008 

2.12 
×1008 

2.01 
×1008 

2.12 
×1008 

2.03 
×1008 

2.16 
×1008 

2.11 
×1008 

10 0 0 0 0 0 
2.14 
×1008 

2.01 
×1008 

2.06 
×1008 

2.16 
×1008 

2.12 
×1008 

2.14 
×1008 

2.12 
×1008 

2.04 
×1008 

2.12 
×1008 

2.11 
×1008 

6. Conclusion 
This work has developed a dispatch strategy that improved the economy of MG by means of CGWO 
model. Here, the primary objective was to diminish the operation cost of the system while satisfying the 
load necessities. Furthermore, the output parameters related with distributed power supply was 
subjected to optimization, for which GOAGA model was used. Accordingly, the performance of GOAGA 
model was evaluated over existing models with respect to grid and cost analysis. From the examination, 
the GOAGA model has revealed a minimum cost value for 1C  , 2C  and total cost over other techniques, 
therefore ensuring the superior economy of MG. Thus, from the assessment, it is obvious that the 
GOAGA model has attained enhanced performance in terms of cost assessment. Moreover, EVs 
discharged throughout peak hours assists DE to meet-up the load demand that lessen the high 
economical cost efficiently. Therefore, the better outcomes establishes the efficacy of the developed 
dispatch model. 
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