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Abstract: This paper presents the minimization of the voltage deviation and power loss, which is related to ORPD in 
unbalanced conditions. Moreover, a hybridization of two techniques (i.e.,) PSO and WOA termed Hybrid (PSO-WOA) 
algorithm is developed in this paper. Here, this proposed technique works on the control variables namely transformer tap 
settings, voltage, and load reactance that are diverse to attain optimum outcomes. The complete experimentation is 
performed on two IEEE bus systems, such as the IEEE 39 and 14 bus systems. The simulation outcomes of the proposed 
PSO-WOA technique are analyzed with conventional techniques to assure the proposed technique. 
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Nomenclature 
Abbreviations  Descriptions 
PSO Particle Swarm Optimization  
WF Wind Farm  
WOA Whale Optimization Algorithm  
OPF Optimal Power Flow  
HSA Harmony Search Algorithm  
PDFs Probability Density Functions  
VD Voltage Deviation 
DE Differential Algorithm  
PMSG Permanent Magnet Synchronous Generator  
ORPD Optimal Reactive Power Dispatch 
SA Simulated Annealing 
SHADE Success History Based Adaptive DE  
GSA Gravitational Search Algorithm  
GAs Genetic Algorithms 
DERs Distributed Energy Resources  
RT-AR-OPF Real-Time Active-Reactive OPF 
2ArchMGWO Two-Archive Multi-Objective GWO  
ABC Artificial Bee Colony Algorithm  
SD Standard Deviation 
ALO Ant Lion Optimizer  
APL Active power Loss 
DS Distribution System 
VS Voltage Stability 
MFO Moth-Flame Optimization  
VP Voltage Profile 
GWO Grey wolf optimizer  
DN Distribution Networks 

 
 
1. Introduction  
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During the past decades, the electrical power system has developed in a progressive manner, and the 
high significant issue occurs because of the recent economy, which runs by electricity. The electrical 
power system is a distributing system and producing, electricity for housing, transportation, and 
industrial, exploits. In addition, the electrical power system is considered as the main core of renewable 
energy systems [18]. The utilization of resources progressively enhances when the demands for electricity 
will improve. Incontrovertibly, the ORPD act as a significant role in the operation of power system 
because of its extraordinary power on the economic, consistency, and security operation problems [19]. As 
a sub-issue of OPF, ORPD is represented as a well-known nonlinear optimization issue in power system 
that concerns on both the continuous and discrete control variables when fulfilling both inequality and 
equality constraints. Therefore, the optimization method is exploited [25] [26] to attain the optimal 
probable control variables combinational as well as transformers tap setting, bus voltages generator, and 
reactive compensators sizing to reduce the objective models [22] [23]. 

To alleviate this ORPD disadvantage is used to reallocate reactive power system to the phase of least 
number of losses occurred in transmission line; enhancement VP; equipment capacities and network 
limits. Since the ORPD is an high non-convex, nonlinear, large-scale complicated static programming as 
well as multi-constrained issue, its solution consequently aims to recognize the best positioning of all 
control variables, whereas selected objective models are reduced [20] [21]. The design variables comprise 
continuous variables, such as generator bus voltages, as well as a discrete variable. So, reduction of APL 
(Ploss) and reduction of VD is considered as the objective models of the ORPD issue [5]. 

Over the past few years, various approaches have been effectively developed to pact the ORPD issue 
in an attempt to mitigate the aforesaid disadvantages namely, GAs [9], GSA [15] DE [10], SA [10], ABC 
[14], PSO [24], HSA [13], and GWO [16]. In the last decade, widespread competitions among researchers 
have been performed, in an attempt to search for a further appropriate/consistent method to handle the 
various optimization issues in power system [17]. In [16], seeker optimization method was exploited in 
order to solve ORPD in larger power system with comprehensive enlightenment of significant 
performance indices in that various objective models have examined namely reduction of APL, 
minimization of Voltage Stability Index and enhancement of VP. 

The main aim of this paper is to develop the PSO-WOA method in order to solve the ORPD issue. At 
first, the disadvantages associated with the ORPD issue under unbalanced environments are focused. 
Subsequently, the capability of the proposed technique to handle an unbalanced Distributed System 
nature is described. Accordingly, the ORPD is estimated proficiently. 

2. Literature Review 
In 2019, Ni Wang et al [1] presented an ORPD model for PMSG in WF to reduce the loss of power. Here, 
the losses inside WTs and the transmission system losses were contemplated. Moreover, the PSO method 
was exploited to discover each WT for reactive power references that create the total loss of WF minimal.  
Here, two conventional RPD schemes were compared broadly with the proposed scheme at various cases; 
the outcomes exhibit that the proposed scheme attains minimum loss of power than the other two 
conventional schemes in all the experimental scenarios. 

In 2018, Partha P. Biswas et al. [2] presented a solution process and formulation for stochastic ORPD 
issues with uncertainties in the wind, solar power, and load demand. In order to form the stochastic 
power, as well as the load demand, which produces from the renewable energy sources, considers a 
suitable PDFs. Various cases were produced that runs on Monte-Carlo simulation and advanced 
minimization approach was implemented to pact with a minimized number of cases. Here, the objectives 
of optimizations were steady-state VD and real power loss of network load buses. Moreover, SHADE was 
adopted as the fundamental search technique. It was effectively incorporated with a constraint handling 
approach, termed Epsilon Constraint (EC), to handle constraints in ORPD issue.  

In 2018, Khaled ben oualid Medani et al [3] presented a novel meta-heuristic method, which was 
enthused from the bubble-net hunting method of humpback whales, termed WOA. This WOA method 
was exploited to resolve the ORPD issue. ORPD was a meticulous case of the OPF. Generally, ORPD was 
represented as the minimization of an objective model instead of the total APL in the electrical networks. 
The restraint includes ratios of tap regulating transformers, generator voltages. The main aim of this 
paper was to analyze the optimal control variables vector so that the power loss lessening can be 
identified.  

In 2016, Brett A. Robbins et al [4] worked on an approach of DERs contributions in order to set the 
optimal reactive power. Moreover, it present in DSs with the aim of regulating bus voltages. Here, the 
modeling of branch power flow method was exploited for radial power systems to make an OPF issue for 
the scenario while the network was balanced. A distributed technique was proposed that was based on 
the Alternating Direction Method of Multipliers (ADMM), which was used to competently solve 
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Quadratic Program (QP). Moreover, the unbalanced three-phase methodology was involved to expand the 
plans, which was developed for the balanced network scenario.  

In 2017, Kasem Nuaekaew et al. [5] presented a novel 2ArchMGWO for solving Multi-Objective ORPD 
issues. The optimizer was enhanced from its novel Multi-Objective GWO by altering the reproduction 
operator and augmenting the 2-archive idea to the approach. Subsequently, resolving MORPD with 
objective models was implemented being the minimization of Active Power Loss and enhancement of VP 
(minimization of VD).  

In 2017, Souhil Mouassa et al. [6] worked on the employ of a newly developed method, which was 
enthused in nature by the hunting method of antlions, termed ALO approach. This technique was 
exploited to solve the ORPD issue by contemplating a large-scale power system. The ALO method was 
enthused by the antlions hunting method. The major motivating facts in antlions were that they have a 
distinctive hunting behavior and show the maximum capacity of evasion the local optima stagnation.  

In 2017, Rebecca Ng Shin Meia et al. [7] presented a novel surfaced nature-inspired optimization 
method termed MFO technique. This method was exploited to address the ORPD issue, which was 
enthused by the navigation natural method of moths while they explore at night, whereas they exploit 
visible light sources as assistance. Here, MFO was comprehended in ORPD issue in order to examine the 
optimal combination of control variables namely reactive compensators sizing, generators voltage, and 
transformers tap setting to attain least total power loss and VD.  

In 2018, Erfan Mohagheghi et al. [8] developed a novel RT-AR-OPF model based on a lookup-table. In 
accordance with the forecasted wind power for a calculation horizon, circumstances were produced on the 
basis of its stochastic distribution. The consequent mixed-integer nonlinear programming problems were 
solved online that concurrently optimize the active and reactive reverse power flow, RPD of Wind 
Stations, as well as discrete slack bus voltage, resultant in a lookup table. An innovative understanding 
method was presented to assure both the possibility as well as the optimality of the realized operation 
scheme.  

3. Objective Model 
The ORPD main objectives are the reduction of the Active Power Loss and improvement of the stability 
and VP. As eq. (1), the dependent variables vector is indicated, where, GP  indicates the slack bus power, 

GQ  indicates the generator reactive power output ( NGi ....2,1 ), lV denotes the voltage 
bus PQ ( NPQi ....2,1 ). Moreover, NPQ  denotes the number of the PQ bus and NG  indicates the count of 

generator bus.  
]......,.......,[ 111 NGGGNPQllG QQVVPX                                              (1)       

The control variables vector is indicated in eq. (2), where CiQ  indicates the shunt VAR compensator 

output ( NCi ....2,1 ), GiV  indicates the voltage-controlled bus for terminal voltage ( NGi ....2,1 ), iT  

indicates the tap changing transformer for tap setting ( NGi ....2,1 ), NT  indicates tap changing 
transformers and NC indicates the count for the shunt VAR compensators. 

],.....,.....,,.....[ 111 NTNCCCNGGG TTQQVVU                                      (2)    
As eq. (3), the chosen variables make equality and inequality constraints and formulate the objective 

function, where aF  indicate Active Power Loss and bF indicate Voltage Deviation. 

bai FFf )1(                                                                          (3) 

3.1 Minimization of ALP  

Eq. (4) states the active power loss minimization, where lP  indicates the ALP system, N  indicates the 

number of transmission lines and kg represents the thk  branch conductance among the thp and 
thq buses. Moreover, p and q indicates the voltage phase angles of the thp and thq buses. 





N

k
qpqpqpkla VVVVgPF

1

22 )]cos(2[                          (4) 

3.2 Voltage Deviation 

The ( iV ) indicates the voltage magnitude reduction for the bus at the different loads system from a pre-

specified ( refV ), which indicates the voltage magnitude reference value is exploited to increase the VP.  
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Eq. (5) represents VP enhancement and eq. (6) indicates the )(x  is the step function. In eq. (5), 

LB represents the number of load buses and in eq. (7), iV represents the voltage from the load flow 

analysis, in the balanced condition. Moreover, P denotes the real powers and Q denotes the reactive 
powers, x refers to the susceptance of the line and r  refers to the resistance. 

)()( maxmin

1

VVPVVPVF pfp
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i
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
                                   (5) 
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At all buses, the power system must endure the voltage that is under normal operating 
circumstances; it must also acclimatize to disturbances, namely the system configuration as well as the 
load change. In recent times, because of the voltage instability, several numbers of networks 
disintegrate. The VS indicator is reduced to enhance VS. ( qL ) represents the value of L -index at each 

bus refers to the collapsed state of that particular bus voltage; hence, qL of the thp bus is indicated in eq. 

(15).  
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1                                                                      (15) 

where NPQ.......,2,1q   
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aqp YYF                                                                             (16) 
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For all of the PQ buses, the L - Index value is determined, as well as the qL  value is set to 0 or 1, 

based on the voltage collapse state and a lack of load for thq bus. Eq. (18) represents the objective model, 
where, NPQLq .....2,1  

)Lmax(F qc                                                                               (18) 

3.3 Equality and Inequality Constraints 

To control the power system, the physical law uses the equality constraint, which refers to the load flow 
equations, and that is denoted in eq. (19) and (20). 

In eq. (20), GpQ indicates the and system reactive powers at the thp bus, GpP refers generation of 

system active power, and NB represents the count of buses  DpQ  and DpP represents the demand linked 

with the reactive and active powers at the thp bus and pqG  denotes the transfer conductance among the 
thp and the thq  buses. Moreover, mnB indicates the susceptance among the thp bus and the thq bus. 

 
NBp

BGVVPP qppqqppq
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q
qpDpGp
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                    (19) 
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[
1





NB

q
qpDpGp VVQQ  )sin()cos( qppqqppq BG                        (20) 

where, NBp ..........2,1  
The design statement must have the capability to restrict the generator reactive power and 

magnitude of the output voltage. Therefore, the corresponding upper and lower limits are denoted in eq. 
(21) and (22). Eq. (23) represents the lower and upper limits in the shunt VAR compensators for the 
reactive power output. The physical considerations limit the lower and upper values of the transformer 
tap settings are indicated in eq. (24). In the security constraints, transmission lines loadings and the 
voltage magnitude at the PQ buses are incorporated. Eq. (25) represents the line flow of each line and 
there is a concerned limit for the buses voltage. 
 

maxmin
GpGpGp VVV  , NGp ,.......2,1                                                (21) 

,maxmin
GpGpGp QQQ  NGp ,.......2,1                                                 (22) 

maxmin
CpCpCp QQQ  , NCp ,.......2,1                                                 (23) 

,TTT max
pp

min
p  NTp ,.......2,1                                                   (24) 

max
LpLp

min
Lp VVV  , NPQp ,.......2,1                                             (25) 

max
lplp SS  , Np ,.......2,1                                                               (26) 

4. Hybrid Optimization Algorithms Adopted for ORPD  

4.1 Conventional PSO Algorithm 

Generally, the PSO algorithm performs on the basis of the swarm of birds. Moreover, in a 
multidimensional search space, it moves in explore of food [24]. Here, every individual is represented as 
a particle. Moreover, this method consists of two significant kinds namely velocity and position that are 
exploited to discover the optimum value. In a d dimensional search space, a swarm of P  particles moves. 
At first, every particle is initialized with arbitrary velocity and position within the search space. As per 
eq. (27), (28) and (29), the current velocity and location for each of the ‘ P ’ particles are updated. 
Moreover, the location of the global optimal particle represents as the optimal solution, which is attained 
using the PSO algorithm. 

   idbestidbest
k
id

k
id xgrandrxprandrvv 

2211
1                       (27) 

11   k
idid

k
id vxx                                                                               (28) 

 In eq. (27), 1r  and 2r  indicates the cognitive and social components, where, bestP indicates the local 
optimal location of individual particles that are updated during every iteration. Eq. (29) indicates the 
global optimal location, which is defined by bestP . In eq. (30), w  indicates the inertial weight and differs 

by iteration and 1rand  and 2rand  indicates two random numbers, which differs among 0 to 1. A 
maximum inertial weight value approves global search, hence a minimum value offers with local 
explorations. 

 bestnbestbestbest pppg ,........21,min                                                       (29) 

   
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minmax w

iter
iteriter

www 


                                         (30) 

Here, maxiter represents the utmost number of iterations and iter  represents the current iteration and 

maxw  and minw  represents the maximum value is 0.9 and the minimum value is 0.4 of the inertial weight. 

Here, acceleration constants 1r  and 2r that drags the swarm to the global and local optimal of the search 
space are performed by time-varying. Eq. (31) and (32) is used to enable exploration in the first phase 
and faster convergence in the exploitation phases. 

  iif r
iter
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rrr 1
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111                                                                    (31) 
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222                                                                  (32) 
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The main disadvantages of PSO are that every particle follows the bestG , hence if bestG  obtains 
wedged in local optima, subsequently the remaining particles could not be capable to search the search-
space well and therefore get wedged in local optima, thus foremost to stagnation result. 

4.2 Conventional WOA Algorithm 

The WOA approach [3] is enthused from the food searching method for a humpback whale. Initially, it 
explores for prey i.e., exploration, subsequently, it encircles the prey and eventually attacks it i.e. 
exploitation. The best solution of the explore space is unidentified; hence WOA chooses an arbitrary 
objective prey as the current optimal candidate solution at the exploration stage. Next to the optimal 
search agent is described; later the other search agent’s aim is to update their location to the optimal 
solution exploiting eq. (33) and (34). 

   tYtYCS


                                                                        (33) 

  SBYtY


 1                                                                            (34) 

In eq. (33), B


 and C


indicates the coefficient vectors, Y


 denotes the location vector of the optimal 

solution attained hitherto. Y


represents the current location vector. As a result, each iteration Y


will be 
updated if there subsists an optimal solution. 

araB


 2                                                                                    (35) 

rC


2                                                                                           (36) 
The vector a


minimizes from 2 to 0 against the iteration course and r


represents the arbitrary vector 

which ranges from [0, 1]. Generally, whales exploit two kinds of Bubble Net Attacking approaches on the 
basis of the probability factor pf . Subsequently, the shrinking encircling approach is attained by the 
minimizing value of a


. The whale moves spirally in the direction of its prey to update the location in the 

spiral updating position. In addition, the distance S


 among the location of the whale  XY, and its prey 








  XY ,
is computed using eq. (37). 

     YleStY lb


2cos1 .                                                            (37) 

Here, b  represents a constant and l is a random number among [-1, 1] and YYS


  . 

Spiral and shrinking methods contain an equal likelihood. Each search agent fitness value is 
computed subsequent to the initialization of the population. Consequently, the optimal search agent 

Y


is determined by comparison. All the parameters included are updated on the basis of the probability 
factor pf . At present, if 5.0pf  and 1B  , the updating process for the location of the current search 

agent is done using eq. (33) and (34). Conversely, if 5.0pf  and 1B ; subsequently, an arbitrary search 

agent is chosen randomY  from the current population, as well as using eq. (38) and (39), the updating 
process for the location of the current search agent is done.  

YYCS random


                                                                           (38) 

  SBYtY random


1                                                                    (39) 

In addition, if 5.0pf after that the current location of the particle is updated using eq. (37), where, l  
represents an arbitrary number among [−1, 1] and differs as stated by eq. (40)  

  112  randomal                                                                  (40) 

4.3 Proposed Algorithm 

In the proposed approach, the idea of iterative hybridization is exploited that comprises of two iterations 
(i.e.,) first and second. Initially, to discover a tentative solution the PSO approach is applied by exploring 
the search space subsequently, the whale Optimization method is applied to improve the solution by 
functioning on the solution, which is decided using PSO method in the first iteration. Next, in the second 
iteration, a new idea of ‘Forced Whale’ is adopted that aims to direct PSO particles by the explorations 
ability of ‘Forced’ WOA. In proposed Hybrid PSO-WOA, using both the PSO and Whale approach, the 
exploration is performed by means of the ‘Forced Whale’ idea. Conversely, exploitation is done only 
exploiting the PSO approach with another new concept termed ‘Capping’ that is applied for second 
iterations to minimize monotonically with an augment in the number of first iterations. Hence, Whale 
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movement is limited to the exploration stage solely. In the exploitation phase, hybridization of WOA will 
bring redundant randomization as well as complexity to the approach. 

As stated by eq. (41) and (42) the ‘Forced’ Whale occurrence all the whale parameters are done 
dependent not merely on second iterations but as well on a number of first iterations. 


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


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
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ita                                                                        (41) 
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 
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2

1
1

im
ita                                                                      (42) 

Here, ti indicates the first iteration ‘variable’ and 2im  indicates the highest number of second 
iterations. From eq. (41), the parameter a  plays an important part in the updating of the location for 
WOA during exploration phase that is done on the basis of the first iteration that minimizes with 
maximizing in a number of first iterations. As shown in eq. (41) and (42), with further increase in a 
number of first iterations a few parameters turn out to be constants as it doesn’t modify in the second 
iterations. In eq. (43), B and C indicates constants. 

  CitBim 2                                                                           (43) 

  












2

25
2

50
2 im

im
it

im
im                                                    (44) 

The proposed approach starts with a population of P Particles that have arbitrary location and 
velocity within the dimensional search space d boundary. Accordingly, bestP  and bestG  are assigned 
accordingly from the initial arbitrary position. The first iteration starts with updating the location, 
velocity, bestP  and bestG that follows the method of PSO as stated in eq. (27) and (32). The WOA is 
executed for every number of the first iteration at a certain amount of second iterations until the 
exploitation stage is attained. At first, WOA aim leader or prey whale is chosen as bestG  of PSO in second 
iterations. 

The optimal solution found by a whale and the fitness comparison is performed among the bestG , 
which is found by PSO during every number of the second iteration. Next final allotment of the optimal 
location of the particles is determined. If the global optimal fitness of PSO is minimum than the fitness of 
the optimal Whale after that global optimal location is allocated to the leader whale (Whale’s optimal) 
and inversely until the end of second iterations. At the first stage, the main aim is to search the search 
space, the objective models namely multi minima models require maximum explorations. In primary 
iterations, the PSO starts the explorations, with the methods stated in eq. (27) to (32). In dynamic second 
iterations, by the exploit of ‘Forced’ WOA the exploration ability is enhanced. As whale searches the 
search space capably by arbitrarily choosing its search agents and by an arbitrary probability factor the 
search method is also chosen. This probability factor differs among 0 and 1 and also determines the 
functioning method of the whale. This exploit of ‘Forced’ WOA in dynamic second iterations is formulated 
by eq. (41) and (42). In the second iterations, the search strategies in WOA are characterized by ideology 
and equations as stated in eq. (38) to (44). At last, in the exploitation stage, the PSO strategy is exploited 
to converge the solution to the optimum value attained at the exploration stage. 

This is formulated by the exploited ‘Capping’ Phenomenon in eq. (43) and (44), that enthusiastically 
minimizes the secondary iterations to 0, as well as merely first iterations of PSO are performed. Fig. 1 
demonstrates the flow diagram of proposed hybrid PSO-WOA. 
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Fig. 1. Flowchart of Hybrid PSO-WOA 

5. Results and Discussions 

5.1 Experimental Setup 

The proposed method is simulated in MATLAB, and the experimentation was performed in the IEEE 14 
and 39 bus systems. To determine the ORPD, the experiments were performed in base case loading 
circumstances, as well as the converging of individual objectives, namely the Voltage penalty ( bF  ), ACP 
( aF  ) and the fitness function, were analyzed. The performance analysis of the proposed technique was 
compared with conventional optimization methods, such as WOA and PSO. Since all these methods were 
stochastic in nature and greatly based depend upon the initial arbitrary solutions, the statistical analysis 
was performed by demeanor the experimentation for just about five iterations. Consequently, the best 
mean, worst, and median performances were analyzed. Further, the standard deviation was computed to 
comprehend the method consistency, and the statistical analyses were performed for more inference. 
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5.2 Performance analysis of the IEEE 14 Bus system 

To attain the ORPD, the reactive power of all the five generator buses namely bus 1, bus 2, bus 3, bus 6 
and bus 8, the voltage magnitudes of bus 3 and bus 13 as well as the transformer tap settings of bus 8, 
bus 9 and bus 10 are optimally fixed by the proposed technique and the conventional techniques, the 
outcomes are summarized in Table 1. Here, the values of all objectives for all 14 bus systems are diverse, 
and the transformer taps settings, consequent loss, voltage penalty are analyzed. From Table 1, the final 
fitness of the proposed method is found to be 2% superior to the system without ORPD and 1.5% superior 
to PSO and 2.3% superior to WOA methods. The aF  in the proposed method is 1.2% superior to the PSO 
method, hence enhanced power dispatch is provided. As stated in eq. (3), the main aim of this paper is to 
minimize the function. The variable ‘V’ is the control variable, which is to be optimized to obtain this 
objective. The fitness is minimized by the proposed method while comparing with the conventional 
approaches. The statistical report of the proposed and conventional techniques is shown in Table 2.  

 
Table 1. Performance analysis of different methods with respect to the cost minimization function in the IEEE 14 Bus 
system 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 2. Statistical Report of different methods for the IEEE 14 Bus system 
Metrics Best   Worst Mean   Median Standard deviation 

PSO 5.21 7.82 4.32 3.21 1.21 
GWO 5.34 7.43 4.21 3.11 1.13 
Proposed 5.16 7.34 4.11 3.05 1.05 

 
The statistical analysis in Table 2 summarizes the rival performance of the proposed approach 

against the existing methods while testing in the IEEE 14 bus system. Here, in all five experimental 
rounds, the fitness for the performance of best-case exhibits the optimal convergence level that is 
attained by each method. Likewise, the performance of worst-case indicates the minimum fitness 
function attained by each technique. As the name refers to mean and the median indicates average as 
well as the median values of fitness, which are attained by each method in all the experimental 
iterations. In the best-case, the proposed method is set up to attained the optimal convergence, when the 
worst convergence is shown by conventional methods that are set up to converge to the similar fitness 
point, while they had several fitness values at early iterations. While considering the worst-case, the 
proposed approach not succeeds to attain good outcomes while comparing with the conventional methods. 
Cooperatively, the proposed method performs better with respect to the best-case and shows poor 
performance with respect to the worst-case. A fairer outcome is attained by calculating the mean and the 
median, for that the proposed method attains the optimal convergence. On the other hand, the fact of SD 
is that a lesser deviation offers more consistent performance. The proposed method is extremely 
degraded compared to the conventional method. On the other hand, the higher median and mean 
performances reached the effect of debasing performance because of the SD. 

5.3 Performance Analysis of IEEE 39 Bus system 

The performance of the IEEE 39 benchmark bus system is analyzed in this section by a similar process, 
which was exploited for the IEEE 14 bus. Here, the reactive power of the six-generation such as bus no 
31, bus no 32, bus no 33, bus no 34, bus no 35, and bus no 38 and the transformer tap settings of bus 36, 

Optimal Control 
Variables 

Without 
ORPD 

With ORPD 
PSO WOA Proposed 

Q,1    1 1.070 1.703 1.862 
Q,2 11.6 12.327 13.08 14.65 
Q,3 18 16.80 14.98 18.04 
Q,6 6.6 7.17 6.66 8.16 
Q,8 0 1.84 1.615 1.842 
V,13 1.26 0.926 0.962 0.965 
V,3 1.23 1.90 1.79 1.98 
T,8 1.062 1.952 1.956 1.940 
T,9 1.968 1.953 1.952 1.031 
T,10 1.233 1.92 1.923 1.932 

aF  12.4 12.3 13.3 13.4 

bF  3.4618 2.4684 2.4695 2.4863 

Final fitness 1.343 1.294 1.294 1.283 
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bus 38 and bus 35 are fixed to attain the ORPD. In Table 3, the performance analysis of the IEEE 39 
benchmark bus system is demonstrated.  

The performance analysis of Table 3 exhibits that the proposed technique attains an enhanced 
performance, with a 5. 03% enhancement attains against the no ORPD circumstances. Moreover, the 
proposed method creates superior outcomes than the existing methods, when aF  is 1.2% better than the 
GWO method. The statistical analysis of the IEEE 39 bus system is summarised in Table 4. 

In Table 4, the best-case of the proposed method is 5.2% superior to the conventional PSO method. 
Similarly, the worst-case of the proposed technique is superior to all the traditional techniques. In 
addition, the proposed method is found to give a superior performance than the existing method, 
subsequent to the analysis of the median, mean, and SD. 

 
Table 3. Performance analysis of Proposed and existing techniques with respect to the cost minimization function in 
IEEE 39 Bus system 

Optimal Control 
Variables 

no-ORPD 
With ORPD 

PSO WOA Proposed 
Q,31 1.5 1.953 1.8234 1.331 
Q,32 0.1 -0.62 -0.842 -0.63 
Q,35 0.6 0.486 0.657 -0.563 
Q,38 1.0265 1.0753 1.0259 1.0484 
Q,33 2.97 2.12 2.18 2.891 
Q,34 2.04 2.08 2.032 2.31 
T,44 2.06 1.96 2.11 1.97 
T,38 2.67 2.05 2.05 2.0528 
T,35 2.16 1.0299 1.037 1.0135 
T,36 2.016 2.048 2.05 2.87 

aF  3.51 3.17 3.67 2.75 

bF  0.352 0.90 1.34 1.35 
Final fitness 8.99 6.298 6.304 5.469 

 
Table 4. Statistical Report of different methods in IEEE 39 Bus system 
Metrics Best   Worst Mean   Median Standard 

deviation 
PSO 16.28  27.122 14.121 36.18 12.28 
GWO 16.29 26.313 16.431 26.42 12.26 
Proposed 16.18   26.233 13.113 16.39 12.18 

6. Conclusion 
In this paper, the proposed PSO-WOA technique was shown and effectively applied. Moreover, the ORPD 
issue was stated as a non-linear optimization issue with inequality and equality constraints. Here, the 
objective models were the Voltage Deviation and the Active Power Loss. Besides, the proposed PSO-WOA 
technique was efficiently reduced the Voltage Deviation and Active Power Loss. For both the IEEE 14 
and 39 benchmark bus systems, the performance of the proposed technique was compared with 
conventional approaches. The proposed method has ensued in a reduced cost function. Finally, the 
performance analysis was revealed that the proposed method provides high-quality solutions to sustain 
high-grade power systems.  
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